Водородные двигатели на авто. Ограниченными сериями выпускаются. Двигатели на водородных элементах

Актуальность вопроса о замене нефтепродуктов более рентабельным и с каждым днём только прогрессирует. Сегодня лучшие умы планеты стараются его решить. И многое уже сделано. Лидирующей альтернативой потребителям нефти является водородный двигатель.

Что такое водород, как использовать

При всестороннем рассмотрении водород наиболее соответствует сегодняшним пожеланиям к дающим энергию источникам. Не загрязняет окружающую среду и практически бесконечен, если получать его из обычной воды.

Есть уже и автомобили, работающие на таком летучем веществе, как водород. Понятно, что до массового перехода на этот ещё далеко. Но тем не менее всё к тому идёт.

В основе используется реакция распада молекул воды на кислородные и водородные атомы. На сегодня применение этой реакции развивается по двум направлениям:

  • использующие в своей работе водород ;
  • водородные топливные элементы, питающие электродвигатель.

Рассмотрим каждое из них отдельно.

Водородные двигатели внутреннего сгорания

Здесь несколько нюансов. Внушительный нагрев и сжатие заставляют газ реагировать с металлическими составляющими агрегата и . А при утечке, контактируя с раскалённым выпускным коллектором, конечно, он воспламеняется. Учитывая это, нужно использовать моторы роторные, у которых выпускной коллектор на приличном расстоянии от впускного. Что снижает вероятность воспламенения.

Также требует некоторых изменений. И агрегат на водороде с внутренним сгоранием уступает по КПД электродвигателю на водородных элементах. Но всё это уже разрабатывается достаточно долго, поэтому не далёк тот день.

Вот пример - BMW 750hL, автомобиль с водородным двигателем. Сошедший с ленты конвейерной маленьким тиражом. Под капотом двигатель на двенадцать цилиндров. Топливом ему служит замес из кислорода и водорода, по составу идентичный ракетному горючему. Машина может набрать максимум 140 км/ч. Газовое ассорти, сжиженно-охлаждённое, содержится в добавочном баке. Его объёма достаточно для покрытия трёхсот километров, а если по пути смесь закончилась, мотор начинает потреблять из основного бака автоматом. Стоимость авто не превышает цен на машины такой же категории, но с карбюраторным движком - порядка 90 тыс. $.

Агрегаты, работающие от водородных батарей

Здесь принцип работы водородного двигателя - электролиз. Тот же, что у свинцовых . Только КПД составляет 45%.

Через мембрану такой «батарейки» пройти могут только протоны. Электроды разных полюсов разделены этой мембраной. К аноду подаётся водород, на катод - кислород. Катализатор, покрывающий их (это платина), заставляет терять электроны. Катод притягивает протоны, пропущенные мембраной, и они начинают реагировать на электроны, итог реакции - образование воды и электрического тока. От анода электричество посредством проводов поступает уже к электромотору, т. е. питает его.

Агрегаты, питающиеся от водородных батарей, с рабочими названиями «Антэл-1» и «Антэл-2», уже работают «Нива» и «Лада» в качестве концепта. Первая силовая установка преодолевает двести тысяч метров за один «полный бак», вторая триста.

О выгодах применения

У водородного горючее только обогащается газовой смесью на 10%, но это на 30–50% понижает расход самого горючего. Получается, что на том же объёме топлива вы будете проезжать, например, не сто пятьдесят, а двести вёрст.

Вот какие достоинства водородного двигателя уже сегодня. А в будущем применение этого чудесного газа, как движущей силы для автомобиля, открывает широчайший ряд выгодных аспектов.

Выгодные аспекты

  • бесплатное сырьё - вода, из которой газ можно брать бесконечно;
  • во время реакции получаемые вещества вреда экологии не доставляют;
  • благодаря реактивному сгоранию КПД рассматриваемого агрегата на порядок выше карбюраторного;
  • колоссальная горючесть газа позволяет силовой установке бесперебойно работать при любых атмосферных показателях как минусовых, так и плюсовых;
  • детонация при сгорании водородной смеси в разы ниже, чем у бензина, что и вибрацию при работе агрегата;
  • здесь не требуется сложных систем трансмиссии, охлаждения и смазки, значит, повышается простота обслуживания благодаря уменьшению числа деталей.

Доводка до совершенства

Чтобы двигатель на водородных элементах работал в постоянном режиме, помимо прочего, ему нужны объёмные аккумуляторы и . А в том виде, в котором они доступны сейчас, используется слишком много места для них. Здесь при изготовлении нужен принципиально новый подход.

Топливные элементы ещё слишком дорогие. Пока только ведётся поиск альтернативных материалов для их производства.

Не доработана пожаробезопасность силовой установки. И вопрос ёмкостей для водорода остаётся открытым. Само устройство водородного двигателя, можно сказать, ещё только приобретает будущие черты.

Экскурс по истории

Примечательно, что водородный двигатель был изобретён гораздо раньше бензинового. Но развитие получил почему-то второй. Построенный во Франции ещё в 1806 году учёным Франсуа Исааком де Риваз агрегат уже тогда работал от гидролиза воды. А стали применять только в 1870.

Видео об использовании водорода в качестве топлива для авто:

Во времена, не столь далёкие, а именно в Великую Отечественную войну, есть свидетельство ещё одного удачного использования водорода, как источника получения энергии. В Ленинграде в блокаду бензина катастрофически не хватало. Поэтому было решено для работы аэростатов заграждения и приводящих лебёдок использовать водород, которого было достаточно. И это сыграло немаловажную роль по защите города.

Вот такая альтернатива нефтепродуктам есть у человечества на сегодня. И работа в этом направлении ведётся всё интенсивнее. Про то, как работает водородный двигатель сейчас и как он будет работать завтра, можно говорить только в общих чертах. Ясно одно - за водородом будущее нашей планеты.

Если имеется чем дополнить, комментарии ждут вас внизу.

Последний энергетический кризис прокатился по миру в далеком 2008 году, и может показаться, что проблем с количеством нефти уже не возникает: нормы выработки становятся больше, а цена – ниже. Но несмотря на это, никто не может отрицать того, что запасы топлива на планете уменьшаются. Автомобильные концерны оплачивают исследования и разработки альтернативных видов топлива. Двигатель Риваза, работающий на воде, появился еще в начале XIX века. Изобретение было представлено в 1806 году и являлось первым двигателем внутреннего сгорания, обогнав бензиновые и газовые двигатели. Разработчики долгое время пытались продолжить разработку в этом направлении, но для того, чтобы провести электролиз и получить необходимое количество энергии требовалось много электричества, что делало такой вид топлива нерентабельным. В конце концов, это в сочетании с взрывоопасностью и поставило точку на исследованиях.

Возврат к водороду произошел в конце 50-х гг. прошлого века: топливный элемент был установлен на тракторы в США. Через три года – в 1962 году – водородный двигатель появился в маленьких автомобилях для гольфа, еще через пять – в мотоциклах. Водород в двигателях внутреннего сгорания (ДВС) может использоваться в двух вариантах: как гибридный двигатель и как топливный элемент.

Гибридный водородный двигатель

Гибридный водородный двигатель используется в качестве присадки в двигателях внутреннего сгорания к бензину или газу. При использовании водорода улучшается воспламеняемость топлива, но из-за высокой степени летучести газа повышается риск воспламенения. Но несмотря на этот недостаток, уменьшается коррозия металлов и вибрация. Для применения водорода нет необходимости в устройстве дополнительного топливного бака, водород вырабатывается из дистиллированной воды. При использовании водорода расстояние, которое можно проехать, увеличивается на 30 процентов. Безопасное использование газа возможно при низких температурах до -30⁰С и при относительно высоких до +30⁰С.

Топливный элемент

Двигатели с топливным элементом самостоятельно производят электроэнергию путем расщепления водорода на отрицательные электроны и положительные протоны. Использование таких двигателей приносит пользу при больших объемах, поэтому чаще всего применяются в большегрузах. На данный момент в Дании, США и Японии тестируют железнодорожные составы, которые работают на двигателях с топливным элементом. Это перспективный путь развития альтернативного топлива, потому что расход водорода меньше расхода бензина на единицу расстояния.

Еще одним направлением для разработки таких двигателей является авиация. В самолете ТУ-154 как раз таки и использовался такой топливный элемент, конечно же, после распада СССР все разработки в этом направлении были заморожены. Тем не менее над проектом пассажирского самолета, который будет работать на водороде, работают ученые Европейского Союза и Китая. Для того чтобы двигатель мог работать, такой самолет должен развить гиперскорость, что будет возможно сделать только при наличии дополнительного двигателя. Преимущества ДВС на водороде связаны с его воздействием на окружающую среду и высоким КПД.

Высокий уровень экологичности

Конечно, невысокая степень загрязнения присутствует, но из-за наличия в механизме автомобиля масла. Даже при добавлении водорода в обычное топливо производительность повышается на 20%. На 5 кг водородного топлива автомобиль проезжает до 500 км. Ученые считают водород единственным возобновляемым источником энергии.

При его неоспоримых преимуществах на сегодняшний день недостатков намного больше, которые в основном связаны с конструктивом двигателя:

  • Летучесть водорода. Заправить автомобиль с ДВС на водороде возможно только на заправке. Дозаправиться от другого автомобиля или из канистры по дороге не получится.
  • Взрывоопасность и пожароопасность. Всем известна катастрофа дирижабля «Гинденбург», который от одной искры загорелся в полете: из 97 человек, находящихся на борту, погибла треть.
  • Высокая стоимость топливных элементов и водородного двигателя, что, в свою очередь, увеличивает стоимость автомобиля. Аналог с водородным двигателем стоит в два раза дороже. Автомобиль на базе водородного двигателя обслуживать в 100 раз дороже, чем обычный двигатель.
  • Водородный двигатель занимает большой объем. В грузовиках и автобусах это не создает никаких неудобств, но в легковых автомобилях уменьшается объем багажного отделения.

Водородный двигатель – это не фантастика. Например, Honda, Toyota и Hyndai наладили линию по производству автомобилей с двигателями на базе водорода и плотно оккупировали рынок: Toyota Mirai (2015), Honda FCX Clarity (2008), Hyundai ix35 Fuel Cell. В середине декабря прошлого года Audi объявило о своем решении выпустить новый концепт на водороде – Q6 H-Tron.

Несмотря на все недостатки, водород – это единственный возобновляемый и неограниченный ресурс на планете. Для того чтобы автомобили с таким ДВС получили широкое распространение, ученым и разработчикам надо будет решить, как устранить негативные характеристики и уменьшить стоимость механизма, а государствам наладить инфраструктуру, чтобы машины на водороде перестали быть редкостью на дорогах.

03.02.2016

Ресурсы нашей планеты не бесконечны, в том числе и запасы «черного золота» (нефти). Несмотря на снижение мировых цен и наличие определенных запасов, осознание важности альтернатив не покидает головы многих умов человечества. Пройдут годы, и мир столкнется с нехваткой энергоресурсов.


Но будущий дефицит нефти - не единственная причина поиска новых вариантов. Люди начали думать о будущем нашей планеты и сохранении окружающей среды. На этом фоне и начались разработки водородных двигателей - устройств, способных работать на неисчерпаемом, доступном и безопасном топливе.




Суть проблемы

Одна из главных проблем - конечно, выбросы в атмосферу. В 2015 году источники около трети всех выбросов CO2 - транспортные средства (в первую очередь автомобили). По результатам исследований к 2050 году выбросы углекислого газа будут только расти (вместе с увеличением автопарка).


Кроме CO2, есть и еще одна проблема - окиси азота, которые негативным образом сказываются на здоровье и приводят к различным проблемам с дыхательной системой людей. Ученым уже удалось доказать, что одной из причин астмы является именно окись азота.


Немаловажная проблема - рост цен на энергоносители. Как показала практика, повышение или снижение цены на нефть не сильно сказывается на стоимости топлива. Бензин (солярка) есть и будут дорогими. Цена если и будет падать, то лишь в незначительной степени. На данном фоне необходим поиск альтернативы, способной подарить независимость в энергетической сфере.




История

Почти половина добываемой в мире нефти идет на производства топлива для машин. Водород в качестве замены классическому «черному золоту» рассматривается уже давно. Причина проста - запасов данного вещества на планете достаточно, чтобы тысячелетиями «кормить планету». Кроме этого, водород несложно выделить из воды, поэтому с поиском ресурсов проблем нет. Единственная сложность - перевозка и хранение, но и данные вопросы уже решаются.


Первая установка, работающая на водороде, появилась в 1841 году (речь идет о запатентованной версии). Уже через 11 лет в Германии удалось построить ДВС, который мог работать на смеси двух элементов - водорода и воздуха. На известном миру дирижабле Гиндебург стоял мотор, работающий на светильном газе (в его составе было половина водорода). Но после трагедии с дирижаблем в 1937 году и гибели 37 человек интерес к водороду, как топливу, временно был утерян.


Но уже в 70-х годах 19 века разработчики снова вернулись к созданию водородного двигателя. На современном этапе важность усовершенствования и активного внедрения таких технологий обсуждается на самом высоком уровне. Популярность обусловлена и ростом цен на нефтепродукты, что заставляет многие страны искать реальные и доступные альтернативы.


Идею создания водородного двигателя не только подхватили, но и внедрили в жизнь такие популярные производители, как Хонда Моторз, Дженерал Моторз, Форд, БМВ и прочие.




Виды водородных авто

Если рассматривать существующие водородные авто, то среди них можно выделить три основные группы:


  • Транспортные средства с обычным мотором, способным работать на водороде или водородном составе. Данные типы авто универсальны, то есть способны ездить на чистом водороде или посредством применения водорода в качестве добавки к топливу. Особенность таких автомобилей - высокий уровень КПД (в случае смешивания с топливом почти на 15-20%). Второй позитивный момент - очищение выхлопа. В частности, снижение угарного газа и углеводов уменьшается почти на 50%, а оксидов азота - на 500%. Такие авто производятся как за границей, так и в странах СНГ. При этом первые транспортные средства появились приблизительно в 80-е годы прошлого века.


  • Машины с электрическим питанием. Такие транспортные средства называют «гибридами». Их особенность - приведение колес в движение с помощью электрического привода, питаемого АКБ. Особенность гибридного мотора - способность работать как на обычном водороде (чистой смеси), так и на смеси с классическим топливом. Первый вариант является более выгодным с позиции затрат и экономически обоснованным. Общий КПД у авто с электродвигателем может достигать 95%. В сравнении с ДВС и их 30-35% столь высокий параметр действительно поражает. Таким образом, переход на водород может повысить полезное действие мотора почти в три раза. Но и здесь не все идеально. Даже для АКБ и его заряда требуется топливо, поэтому вредные выхлопы все равно будут присутствовать. Чтобы убрать вредные пары полностью, был создан рассмотренный ниже тип водородного двигателя.


  • Водородный автомобиль, в котором установлен электрический двигатель, работающий от основного топлива. По теории такой узел способен работать от смеси водорода и воздуха. КПД устройства может достигать 85%. Но это в теории. На практике удалось добиться лишь 75%. В условиях городского цикла такое транспортное средство получает массу преимуществ перед обычными авто (в первую очередь, по отношению затрат на топливо).



Как это работает?

Схема работы авто на водороде выглядит следующим образом:


  • поршень перемещается сверху вниз, открывая при этом клапан выпуска;
  • давление в камере сгорания становится равным атмосферному;
  • при достижении поршнем нижней точки происходит герметизация камеры;
  • клапан выпуска закрывается, а через клапаны подачи топлива осуществляется впрыск топливной смеси (гремучего газа);
  • в процессе сгорания смеси давления в камере возрастает; этой силы достаточно, чтобы открыть установленные в ГБЦ обратные клапана и осуществить выброс продуктов горения;
  • давление снижается, что приводит к закрытию обратных клапанов и герметизации камеры сгорания;
  • действие созданного давления способствует перемещению поршня и его возврату в первоначальную точку;
  • как только поршень становится в верхней позиции, снова открываются клапана впуска и так далее.


Как следствие, принцип действия водородного мотора ничем не отличается от обычного ДВС. Разница лишь в применяемом топливе.


Что касается получения необходимого газа, то это может происходить несколькими путями. Один из них - посредством электролиза воды.


Описанная выше схема является простейшей, но она работает. При этом водород можно использовать и в обычном ДВС. Преимущество такой подмены - быстрое сгорание топлива и рост общей производительности автомобиля.


Пары жидкости рекомендуется добавлять в силовой узел уже к имеющемуся водородному топливу. После работы на водороде двигатель реально очищается от нагара и разных «напылений». Но есть и отрицательная сторона. Вместе с нагаром водород смывает и имеющуюся масляную пленку. Как следствие, может снизиться ресурс силового узла.


Чтобы перевести обычный двигатель на водородное топливо, стоит произвести переделку в машине выхлопной и клапанной системы. Кроме этого, необходимо заменить поршни, которые должны иметь керамическое покрытие. Если же сделать подобные переделки, то проблем со смазкой или ржавчиной точно не будет.




Преимущества и недостатки

Можно долго обсуждать все перспективы водородных двигателей, но первое, с чего всегда нужно начинать - изучение плюсов и минусов конструкции.




К плюсам водородных моторов можно отнести:


  • Высокий уровень экологичности - одно из главных преимуществ, которое до сих пор является главной движущей силой данного нововведения. Сам водород является по-настоящему экологичным видом топлива. В результате его сгорания возникает только вода. Это несложно увидеть на примере простой химической формулы - 2Н2+О2=2Н2О. Многие посчитают, что при езде на водородном авто из выхлопной трубы будет выливаться обычная вода (пар). Это не совсем так. Нельзя забывать, что в двигателе есть еще масло или антифриз, которые могут попасть в камеру сгорания, а далее - в выхлоп автомобиля. Но для ученых это не проблема - они уже работают над устранением недостатка. Возможно, в скором будущем горение масла не будет приводить к ухудшению качества выбросов, а появившуюся в результате горения воду можно было бы собрать посредством электролиза;


  • Есть возможность использовать сразу два вида топлива - бензин и водород. Единственное, что для этого необходимо - устанавливать две отдельные емкости. При желании можно выбрать тот вид топлива, который наиболее актуален в конкретный момент времени;


  • Высокий коэффициент полезного действия, который на 200% выше, чем у обычного ДВС и на 150% больше, чем у дизеля;



  • Специалисты сходятся во мнении, что уже через 30-40 лет водород полностью покроет все потребности в топливе;


  • Водород по всем показателям - идеальная смесь для применения в виде топлива. Он имеет неограниченные объемы, если в виде сырья рассматривать обычную воду.



Минусы водородного двигателя:


  • Для обеспечения должной работы водородного мотора нужны мощные аккумуляторы, общая масса которых может быть весьма серьезной. Как результат, общий вес транспортного средства становится больше;


  • Топливные элементы на водороде отличаются высокой ценой, что делает дороже и сам транспорт. Применение водородных элементов неизбежно приводит к повышению пожаро- и взрывоопасности;

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп , а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Читайте в этой статье

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или , а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в , чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода на полном баке водорода составляет около 300 км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду, при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания , другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

  • Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.
  • Первым разработчиком, представившим водородный двигатель для автомобиля широкой публике, был концерн «Тойота». Ещё в 1997 году ими был презентован внедорожник FCHV, который тогда так и не запустили в .

    Хорошей альтернативой бензину может стать водородный двигатель

    Сегодня ведут исследования и другие компании, среди них:

    • Honda Motor,
    • Volkswagen,
    • General Motors,
    • Daimler AG,
    • Ford Motor,
    • BMW и так далее.

    Как работает водородный двигатель?

    Машины на водородном двигателе можно разделить на три группы:

    • авто с двумя энергоносителями, обладающее высокоэкономичным двигателем, который может работать как на чистом водороде, так и на смеси его . КПД такого двигателя 90–95%, тогда как дизельного - 50%, а бензинового - 35%. Такие автомобили соответствуют стандарту «Евро-4»;
    • водородный автомобиль со встроенным электродвигателем, который питает основной топливный элемент, установленный на борту. Сейчас созданы авто с КПД выше 75%;
    • обычные автомобили, работающие на смеси или чистом водороде. Выхлоп намного чище, а КПД «подрастёт» примерно на 20%.

    Как работает водородный двигатель? Выделяют 2 типа силовых установок по принципу работы:

    • водородные двигатели внутреннего сгорания. Используется роторный двигатель;
    • силовые установки на топливных водородных элементах - их принцип работы построен на химической реакции. Корпус элемента имеет мембрану, проводящую только протоны и разделяющую камеры с электродами - анодом и катодом. В камеру анода подводят водород, в камеру катода подводят кислород. Электроды покрывают слоем катализатора, например, это платина. Молекулярный водород теряет электроны под воздействием катализатора. Протоны через мембрану проводятся к катоду, под воздействием катализатора в результате соединения с электронами образуется вода. Из камеры анода электроны уходят в электрическую цепь, которая подсоединена . Так образуется ток для питания мотора.

    Достоинства водородного двигателя:

    • продукт горения водорода - вода. А значит, это самое экологически чистое топливо;
    • мощность, приёмистость и иные показатели двигателя выше, чем у стандартного - электроэнергия обеспечивает их сполна;
    • низкий уровень шума;
    • простота обслуживания - не нужна сложная трансмиссия, а трущихся деталей меньше;
    • низкая себестоимость ;
    • меньший расход топлива и большая скорость заправки;
    • более высокий запас хода;
    • водород имеет большой потенциал в качестве альтернативного вида топлива, так как он может быть получен из различных источников, в том числе солнечной энергии или ветра;
    • основное сырьё - вода - бесплатное.

    Недостатки водородного двигателя:

    • Использование топливных элементов в обычном двигателе чревато пожаром или взрывом из-за его устройства.
    • Стоимость их также весьма высока.
    • Вес автомобиля увеличивается в результате использования преобразователей тока и мощных аккумуляторов.
    • Процесс получения из воды водорода пока тоже недёшев, как и транспортировка нового топлива.
    • Прогнозируются и экологические проблемы - увеличение в атмосфере количества водорода может пагубно сказаться на озоновом слое Земли.
    • – также вредный для окружающей среды процесс.
    • Одной из проблем транспортных средств на водороде является высокая стоимость платины, необходимой для химической реакции в двигателе.
    • Отсутствие водородных заправочных станций делает водородные автомобили неконкурентоспособными по сравнению с обычными автомобилями.
    • Не решён вопрос о хранении. На сегодняшний день предлагается хранить в сжиженном виде либо под высоким давлением, но исследования продолжаются.

    Водородные топливные элементы

    В разные годы водородные топливные элементы использовались:

    • для тракторов,
    • локомотивов,
    • подводных лодок,
    • вертолётов,
    • в автомобиле для гольфа,
    • на мотоцикле.

    Для автомобилей с водородным двигателем и автобусов используются элементы на протонно-обменной мембране (PEM), они компактны и мало весят.

    Авто на водороде

    • Тойота, приручившая водород, - Fuel Cell Sedan - это комфорт и вместительность стандартной модели. Для того чтобы увеличить пространство в салоне и багажнике, сжатые резервуары водорода расположены в полу автомобиля. Предназначена машина для пяти пассажиров, цена составит 67500 $.
    • Технологии космоса в обычной жизни. BMW Hydrogen 7 уже доказал свои возможности на практике, порядка ста автомобилей BMW Hydrogen 7 были тестированы выдающимися деятелями культуры, политики, бизнеса и средств массовой информации. Опыт испытания в реальных условиях показал, что переход на водород полностью совместим с комфортом, динамикой и безопасностью, которые вы могли бы ожидать от BMW. Авто можно переключать с одного вида топлива на другой. Максимальная скорость 229 км/ч.
    • Генератор энергии Honda FCX Clarity. По словам разработчиков, можно подключить к трансформатору и снабжать электричеством все бытовые приборы. Баки с водородом находятся под задними сидениями, а после полной заправки топлива ей хватит на 500 км. Цена от 62807 $.
    • Часть автобусов MAN работает на водороде.

    Водородные двигатели будущего

    • Новое сотрудничество в автомобильном секторе начали General Motors (GM) и Honda Motor. Обе компании планируют совместно разрабатывать водородные топливные элементы в течение следующих семи лет. Обмен ноу-хау поможет снизить затраты на технологии и делает основной целью реагирование на увеличение объёма глобальных требований, предъявляемых к сокращению выбросов, стандарт «Евро-4» имеет строгие рамки.
    • Силовая установка автомобиля может послужить и электростанцией для дома, обеспечивая его энергией в течение 5 дней.
    • Каждый производитель в ближайшее время рассчитывает продавать минимум тысячу экокаров за год, ожидаемая цена 97000 $.
    • К 2050 году водород как источник топлива покроет треть производимой энергии.

    А вот Илон Маск (глава SpaceX и Tesla) к новому топливу относится крайне критично, считая его создание маркетинговым ходом. Маск заявил, что использование технологий не решит реальных транспортных проблем и что в литий-ионных батареях плотность хранения энергии превышает все водородные разработки. А как думаете вы?