Двигатели непосредственного впрыска топлива инжекторные. Системы впрыска бензиновых двигателей. Как работает топливная система дизельного двигателя

Двигатели с системами впрыска топлива, или инжекторные двигатели, почти вытеснили с рынка карбюраторные моторы. На сегодняшний день существует несколько типов систем впрыска, отличающихся устройством и принципом работы. О том, как устроены и работают различные типы и виды систем впрыска топлива, читайте в этой статье.

Устройство, принцип работы и типы систем впрыска топлива

Сегодня большинство новых легковых автомобилей оснащаются двигателям с системой впрыска топлива (инжекторными двигателями), которые обладают лучшими характеристиками и более надежны, чем традиционные карбюраторные моторы. Об инжекторных двигателях мы уже писали (статья «Инжекторный двигатель »), поэтому здесь рассмотрим лишь типы и разновидности систем впрыска топлива.

Существует два принципиально разных типа систем впрыска топлива:

Центральный впрыск (или моновпрыск);
- Распределенный впрыск (или многоточечный впрыск).

Эти системы отличаются количеством форсунок и режимами их работы, однако принцип работы у них одинаков. В инжекторном двигателе вместо карбюратора установлена одна или несколько топливных форсунок , которые распыляют бензин во впускной коллектор или непосредственно в цилиндры (воздух для образования топливно-воздушной смеси подается в коллектор с помощью дроссельного узла). Такое решение позволяет достичь однородности и высокого качества горючей смеси, а главное — несложной установки режима работы двигателя в зависимости от нагрузки и других условий.

Управление системой осуществляется специальным электронным блоком (микроконтроллером), который собирает информацию с нескольких датчиков и мгновенно изменяет режим работы двигателя. В ранних системах эту функцию выполняли механические устройства, однако сегодня двигатель полностью находится под контролем электроники.

Системы впрыска топлива отличаются по количеству, месту установки и режиму работы форсунок.


1 - цилиндры двигателя;
2 - впускной трубопровод;
3 - дроссельная заслонка;
4 - подача топлива;
5 - электрический провод, по которому к форсунке поступает управляющий сигнал;
6 - поток воздуха;
7 - электромагнитная форсунка;
8 - факел топлива;
9 - горючая смесь

Это решение было исторически первым и самым простым, поэтому в свое время получило довольно широкое распространение. Принципиально система очень проста: в ней используется одна форсунка, которая постоянно распыляет бензин в один на все цилиндры впускной коллектор. В коллектор же подается и воздух, поэтому здесь образуется топливно-воздушная смесь, которая через впускные клапаны поступает в цилиндры.

Преимущества моновпрыска очевидны: эта система очень проста, для изменения режима работы двигателя нужно управлять только одной форсункой, да и сам двигатель претерпевает незначительные изменения, ведь форсунка ставится на место карбюратора.

Однако моновпрыск имеет и недостатки, в первую очередь - эта система не может обеспечить все возрастающие требования по экологической безопасности. Кроме того, поломка одной форсунки фактически выводит двигатель из строя. Поэтому сегодня двигатели с центральным впрыском практически не выпускаются.

Распределенный впрыск

1 - цилиндры двигателя;
2 - факел топлива;
3 - электрический провод;
4 - подача топлива;
5 - впускной трубопровод;
6 - дроссельная заслонка;
7 - поток воздуха;
8 - топливная рампа;
9 - электромагнитная форсунка

В системах с распределенным впрыском используются форсунки по числу цилиндров, то есть у каждого цилиндра - своя форсунка, расположенная во впускном коллекторе. Все форсунки объединены топливной рампой, через которую в них подается топливо.

Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок:

Одновременный впрыск;
- Попарно-параллельный впрыск;
- Фазированный спрыск.

Одновременный впрыск. Здесь все просто - форсунки, хоть и расположены во впускном коллекторе «своего» цилиндра, но открываются в одно время. Можно сказать, что это усовершенствованный вариант моновпрыска, так как здесь работает несколько форсунок, но электронный блок управляет ими, как одной. Однако одновременный впрыск дает возможность индивидуальной регулировки впрыска топлива для каждого цилиндра. В целом, системы с одновременным впрыском просты и надежны в работе, но по характеристикам уступают более современным системам.

Попарно-параллельный впрыск. Это усовершенствованный вариант одновременного впрыска, он отличается тем, что форсунки открываются по очереди парами. Обычно работа форсунок настроена таким образом, чтобы одна из них открывалась перед тактом впуска своего цилиндра, а вторая - перед тактом выпуска. На сегодняшний день этот тип системы впрыска практически не используется, однако на современных двигателях предусмотрена аварийная работа двигателя именно в этом режиме. Обычно такое решение используется при выходе из строя датчиков фаз (датчиков положения распредвала), при котором невозможен фазированный впрыск.

Фазированный впрыск. Это наиболее современный и обеспечивающий наилучшие характеристики тип системы впрыска. При фазированном впрыске число форсунок равно числу цилиндров, и все они открываются и закрываются в зависимости от такта. Обычно форсунка открывается непосредственно перед тактом впуска - так достигаются лучший режим работы двигателя и экономичность.

Также к распределенному впрыску относят системы с непосредственным впрыском, однако последний имеет кардинальные конструктивные отличия, поэтому его можно выделить в отдельный тип.


Системы с непосредственным впрыском наиболее сложные и дорогие, однако только они могут обеспечить наилучшие показатели по мощности и экономичности. Также непосредственный впрыск дает возможность быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.д.

В системах с непосредственным впрыском топлива форсунки установлены непосредственно в головке, распыляя топливо сразу в цилиндр, избегая «посредников» в виде впускного коллектора и впускного клапана (или клапанов).

Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, такую систему невозможно установить на серийный двигатель - его приходится модернизировать, что связано с большими затратами. Поэтому непосредственный впрыск сегодня используется только на дорогих автомобилях.

Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают существенную экономию топлива и обеспечивают более надежную и качественную работу двигателя. Сейчас наблюдается тенденция снижения цены машин с такими двигателями, поэтому в будущем они могут серьезно потеснить автомобили с инжекторными двигателями других систем.

Концептуально двигатели внутреннего сгорания – бензиновые и дизельные практически идентичны, но существует между ними ряд отличительных особенностей. Одной из основных является разное протекание процессов горения в цилиндрах. У дизеля топливо загорается от воздействия высоких температур и давления. Но для этого необходимо, чтобы дизтопливо подавалось непосредственно в камеры сгорания не только в строго определенный момент, но еще и под высоким давлением. И это обеспечивают системы впрыска дизельных двигателей.

Постоянное ужесточение экологических норм, попытки получить больший выход мощности при меньших затратах топлива обеспечивают появление все новых конструктивных решений в .

Принцип работы у всех существующих видов впрыска дизеля идентичен. Основными элементами питания являются топливный насос высокого давления (ТНВД) и форсунка. В задачу первой составляющей входит нагнетание дизтоплива, благодаря чему давление в системе значительно повышается. Форсунка же обеспечивает подачу топлива (в сжатом состоянии) в камеры сгорания, при этом распыляя его для обеспечения лучшего смесеобразования.

Стоит отметить, что давление топлива напрямую влияет на качество сгорания смеси. Чем оно выше, тем дизтопливо лучше сгорает, обеспечивая больший выход мощности и меньшее содержание загрязняющих веществ в отработанных газах. И для получения более высоких показателей давления использовали самые разные конструктивные решения, что и привело к появлению разных видов систем питания дизеля. Причем все изменения касались исключительно указанных двух элементов – ТНВД и форсунок. Остальные же составляющие – бак, топливопроводы, фильтрующие элементы, по сути, идентичны во всех имеющихся видах.

Типы дизельных систем питания

Дизельные силовые установки могут быть оснащены системой впрыска:

  • с рядным насосом высокого давления;
  • с насосами распределительного типа;
  • аккумуляторного типа (Common Rail).

С рядным насосом

Рядный ТНВД на 8 форсунок

Изначально эта система была полностью механической, но после в ее конструкции начали использоваться электромеханические элементы (касается регуляторов изменения цикловой подачи дизтоплива).

Основная особенность этой системы заключена в насосе. В нем плунжерные пары (прецизионные элементы, создающие давление) обслуживали каждый свою форсунку (количество их соответствовало количеству форсунок). Причем эти пары размещались в ряд, отсюда и название.

К достоинствам системы с рядным насосом можно отнести:

  • Надежность конструкции. Насос имел систему смазки, что обеспечивало узлу большой ресурс;
  • Невысокая чувствительность к чистоте топлива;
  • Сравнительная простота и высокая ремонтопригодность;
  • Большой ресурс насоса;
  • Возможность работы мотора при отказе одной секции или форсунки.

Но недостатки у такой системы более существенны, что и привело к постепенному отказу от нее и отданию предпочтения более современным. Негативными сторонами такого впрыска считаются:

  • Невысокие быстродействие и точность дозировки топлива. Механическая конструкция просто не способна это обеспечить;
  • Сравнительно невысокое создаваемое давление;
  • В задачу ТНВД входит не только создание давления топлива, но еще и регулировка цикловой подачи и момент впрыска;
  • Создаваемое давление напрямую зависит от оборотов коленчатого вала;
  • Большие габариты и масса насоса.

Эти недостатки, и в первую очередь – невысокое создаваемое давление, привело к отказу от этой системы, поскольку она просто перестала вписываться в стандарты по экологичности.

С насосом распределенного типа

ТНВД распределенного впрыска стала следующим этапом в развитии систем питания дизельных агрегатов.

Изначально такая система была тоже механической и отличалась от описанной выше лишь конструкцией насоса. Но со временем в ее устройство добавили систему электронного управления, которая улучшила процесс регулировки впрыска, что позитивно сказалось на показателях экономичности мотора. Определенный период такая система вписывалась в стандарты экологичности.

Особенность этого типа впрыска сводилась к тому, что конструкторы отказались от использования многосекционной конструкции насоса. В ТНВД начала использоваться всего одна плунжерная пара, обслуживающая все имеющиеся форсунки, количество которых варьируется от 2 до 6. Для обеспечения подачи топлива на все форсунки, плунжер совершает не только поступательные движения, но еще и вращательные, которые и обеспечивают распределение дизтоплива.

ТНВД с насосом распределенного типа

К положительным качествам таких систем относились:

  • Малые габаритные размеры и масса насоса;
  • Лучшие показатели по топливной экономичности;
  • Использование электронного управления повысило показатели системы.

К недостаткам же системы с насосом распределенного типа относятся:

  • Небольшой ресурс плунжерной пары;
  • Смазка составных элементов осуществляется топливом;
  • Многофункциональность насоса (помимо создания давления он еще управляется подачей и моментом впрыска);
  • При отказе насоса система прекращала работать;
  • Чувствительность к завоздушиванию;
  • Зависимость давления от оборотов двигателя.

Широкое распространение такой тип впрыска получил на легковых авто и небольшом коммерческом транспорте.

Насос-форсунки

Особенность этой системы заключена в том, что форсунка и плунжерная пара объединены в единую конструкцию. Привод секции этого топливного узла осуществляется от распределительного вала.

Примечательно, что такая система может быть как полностью механической (управление впрыском осуществляется рейкой и регуляторами), так и электронной (используются электромагнитные клапаны).

Насос-форсунка

Некой разновидностью этого типа впрыска является использование индивидуальных насосов. То есть для каждой форсунки предусматривается своя секция, приводимая в действие от распределительного вала. Секция может располагаться непосредственно в ГБЦ или быть вынесенной в отдельный корпус. В такой конструкции используются обычные гидравлические форсунки (то есть, система механическая). В отличие от впрыска с ТНВД, магистрали высокого давления – очень короткие, что позволило значительно увеличить давление. Но такая конструкция особого распространения не получила.

К положительным качествам насос-форсунок питания можно отнести:

  • Значительные показатели создаваемого давления (самые высокие среди всех используемых типов впрыска);
  • Небольшая металлоемкость конструкции;
  • Точность дозировки и реализации многократного впрыска (в форсунках с электромагнитными клапанами);
  • Возможность работы двигателя при отказе одной из форсунок;
  • Замена поврежденного элемента не сложная.

Но имеются в таком типе впрыска и недостатки, среди которых:

  • Неремонтопригодность насос-форсунок (при поломке требуется их замена);
  • Высокая чувствительность к качеству топлива;
  • Создаваемое давление зависит от оборотов двигателя.

Насос-форсунки получили широкое распространение на коммерческом и грузовом транспорте, а также эту технологию использовали некоторые производители легковых авто. Сейчас она не очень часто используется из-за высокой стоимости обслуживания.

Common Rail

Пока является самой совершенной в плане экономичности. Также она полностью вписывается в последние стандарты экологичности. К дополнительным «плюсам» можно отнести ее применяемость на любых дизельных двигателях, начиная от легковых авто и заканчивая морскими судами.

Система впрыска Common Rail

Особенность ее заключена в том, что многофункциональность ТНВД не требуется, и в его задачу входит только нагнетание давления, причем не для каждой форсунки отдельно, а общую магистраль (топливную рампу), а уже от нее дизтопливо подается на форсунки.

При этом топливные трубопроводы, между насосом, рампой и форсунками имеют сравнительно небольшую длину, что позволило повысить создаваемое давление.

Управление работой в этой системе осуществляется электронным блоком, что значительно увеличило точность дозировки и скорость работы системы.

Положительные качества Common Rail:

  • Высокая точность дозировки и использование многорежимного впрыска;
  • Надежность ТНВД;
  • Нет зависимости значения давления от оборотов мотора.

Негативные же качества у этой системы такие:

  • Чувствительность к качеству топлива;
  • Сложная конструкция форсунок;
  • Отказ системы при малейших потерях давления из-за разгерметизации;
  • Сложность конструкции из-за наличия ряда дополнительных элементов.

Несмотря на эти недостатки автопроизводители все больше отдают предпочтение Common Rail перед другими видами систем впрыска.

Основным назначением системы впрыска (иное название - инжекторная система) является обеспечение своевременной подачи топлива в рабочие цилиндры ДВС.

В настоящее время подобная система активно используется на дизельных и бензиновых двигателях внутреннего сгорания. Важно понимать, что для каждого типа двигателя система впрыска будет в значительной мере отличаться.

Фото: rsbp (flickr.com/photos/rsbp/)

Так в бензиновых ДВС процесс впрыска способствует образованию топливовоздушной смеси, после чего происходит ее принудительное воспламенение от искры.

В дизельных же ДВС подача топлива осуществляется под высоким давлением, когда одна часть топливной смеси соединяется с горячим сжатым воздухом и почти моментально самовоспламеняется.

Система впрыска остается ключевой составной частью общей топливной системы любого автомобиля. Центральным рабочим элементом подобной системы является топливная форсунка (инжектор).

Как уже было сказано ранее в бензиновых двигателях и дизелях применяются различные виды систем впрыска, которые мы и рассмотрим обзорно в этой статье, а детально разберем в последующих публикациях.

Виды систем впрыска на бензиновых ДВС

На бензиновых двигателях используются следующие системы подачи топлива - центральный впрыск (моно впрыск), распределенный впрыск (многоточечный), комбинированный впрыск и непосредственный впрыск.

Центральный впрыск

Подача топлива в системе центрального впрыска происходит за счет топливной форсунки, которая расположена во впускном коллекторе. Поскольку форсунка всего одна, то эту систему впрыска называют еще - моновпрыск.

Системы этого вида на сегодняшний день утратили свою актуальность, поэтому в новых моделях автомобилей они не предусмотрены, впрочем, в некоторых старых моделях некоторых автомобильных марок их можно встретить.

К преимуществам моно впрыска можно отнести надежность и простоту использования. Недостатками подобной системы являются низкий уровень экологичности двигателя и высокий расход топлива .

Распределенный впрыск

Система многоточечного впрыска предусматривает подачу горючего отдельно на каждый цилиндр, оснащенный собственной топливной форсункой. При этом ТВС образуется только во впускном коллекторе.

В настоящее время большинство бензиновых двигателей оснащено системой распределенной подачи топлива. Преимуществами подобной системы являются высокая экологичность, оптимальный расход топлива, умеренные требования к качеству потребляемого топлива.

Непосредственный впрыск

Одна из наиболее совершенных и прогрессивных систем впрыска. Принцип работы подобной системы заключается в прямой подаче (впрыске) топлива в камеру сгорания цилиндров.

Система непосредственной подачи топлива позволяет получать качественный состав ТВС на всех этапах работы ДВС с целью улучшения процесса сгорания горючей смеси, увеличения рабочей мощности двигателя, снижения уровня отработанных газов.

К недостаткам данной системы впрыска можно отнести сложную конструкцию и высокие требования к качеству топлива .

Комбинированный впрыск

Система данного типа объединила в себе две системы - непосредственный и распределенный впрыск. Зачастую она применяется для уменьшения выбросов токсичных элементов и отработанных газов, благодаря чему достигается высокие показатели экологичности двигателя.

Все системы подачи топлива, пнименяемые на бензиновых ДВС могут быть оснащены механическими или электронными устройствами управления, из которых последняя наиболее совершенна, поскольку обеспечивает наилучшие показатели экономичности и экологичности двигателя.

Подача топлива в подобных системах может осуществляться непрерывно или дискретно (импульсно). По мнению специалистов, импульсная подача топлива является наиболее целесообразной и эффективной и на сегодняшний день применяется во всех современных двигателях.

Виды систем впрыска дизельных ДВС

На современных дизельных двигателях применяются такие системы впрыска, как система насос-форсунки, система Сommon Rail, система с рядным или распределительным ТНВД (топливным насосом высокого давления).

Наиболее востребованные и считаются наиболее прогрессивными из них системы: Сommon Rail и насос-форсунки, о которых ниже поговорим чуть подробнее.

ТНВД является центральным элементом любой топливной системы дизельного двигателя.

В дизелях подача горючей смеси может осуществляться как в предварительную камеру, так и напрямую в камеру сгорания (непосредственный впрыск).

На сегодняшний день предпочтение отдается системе непосредственного впрыска, которую отличает повышенный уровень шума и менее плавная работа двигателя, по сравнению с впрыском в предварительную камеру, но при этом обеспечивается гораздо более важный показатель - экономичность.

Система впрыска насос-форсунки

Подобная система применяется для подачи и впрыска топливной смеси под высоким давлением центральным устройством - насос-форсунками.

По названию можно догадаться, что ключевой особенностью данной системы является то, что в единственном устройстве (насос-форсунке) объединены сразу две функции: создание давления и впрыск.

Конструктивным недостатком данной системы является то, что насос оснащен приводом постоянного типа от распредвала двигателя (не отключаемый), который приводит к быстрому износу конструкции. Из-за этого производители все чаще делают выбор в пользу системы впрыска Сommon Rail.

Система впрыска Сommon Rail (аккумуляторный впрыск)

Это более совершенная система подачи ТС для большинства дизельных двигателей. Ее название пошло от основного конструктивного элемента - топливной рампы, общей для всех форсунок. Сommon Rail в переводе с английского как раз и означает - общая рампа.

В такой системе топливо подается к топливным форсункам от рампы, которую еще называют аккумулятором высокого давления, из-за чего у системы появилось и второе название - аккумуляторная система впрыска.

В системе Сommon Rail предусмотрено проведение трех этапов впрыска - предварительного, основного и дополнительного. Это позволяет уменьшить шум и вибрации двигателя, сделать более эффективными процесс самовоспламенения топлива, уменьшить количество вредных выбросов в атмосферу.

Для управления системами впрыска на дизелях предусмотрено наличие механических и электронных устройств. Системы на механике позволяют контролировать рабочее давление, объем и момент впрыска топлива. Электронные системы предусматривают более эффективное управление дизельными ДВС в целом.

» Система впрыска топлива — схемы и принцип действия

Разные системы и типы впрыска топлива.

Топливный инжектор — это не что иное, как автоматический контролируемый клапан. Топливные форсунки являются частью механической системы, которая впрыскивает топливо в камеры сгорания через определенный интервал. Топливные инжекторы способны открываться и закрываться много раз в течение одной секунды. В последние годы, использованные ранее для доставки топлива карбюраторы, были практически заменены инжекторами.

  • Дроссельно-заслонный инжектор.

Корпус дроссельной заслонки является самым простым типом впрыска. Как и карбюраторы, дроссельно-заслонный инжектор расположен на верхней части двигателя. Такие инжекторы очень сильно напоминают карбюраторы, кроме их работы. Как и карбюраторы, они не имеют миску топлива или жиклеры. В том виде форсунки передают его непосредственно в камеры сгорания.

  • Система непрерывного впрыска.

Как и предполагает название, существует непрерывный поток топлива из форсунок. Вход его в цилиндры или трубки контролируется с помощью впускных клапанов. Существует непрерывный поток топлива при переменной ставке в непрерывной инъекции.

  • Центральный порт впрыска (ИПЦ).

Эта схема использует особый тип арматуры, так называемые ‘тарелки клапанов’. Тарелками клапанов являются клапаны, используемые для управления входа и выброса топлива к цилиндру. Это распыляет горючее на каждый прием с помощью трубки, прикрепленной к центральному инжектору.

  • Мульти-порт или многоточечный впрыск топлива — схема работы.

Один из более продвинутых схем впрыска топлива в наше время называется ‘многоточечный или мульти-порт впрыска’. Это динамический тип впрыска, в котором содержится отдельная форсунка для каждого цилиндра. В мульти-порт системе впрыска топлива все форсунки распыляют его одновременно без каких-либо задержек. Одновременный многоточечный впрыск — это одна из самых продвинутых механических настроек, которая позволяет горючему в цилиндре мгновенно воспламеняться. Следовательно, с многоточечным впрыском топлива водитель получит быстрый отклик.

Современные схемы впрыска топлива являются довольно сложными компьютеризированными механическими системами, которые сводятся не только к топливным форсункам. Весь процесс контролируется с помощью компьютера. И различные детали реагируют в соответствии с данными инструкциями. Существует ряд датчиков, которые адаптируется с помощью посыла важной информации компьютером. Существуют различные датчики, которые контролируют расход топлива, уровень кислорода и другие.

Хотя эта схема топливной системы более сложная, но работа ее разных частей очень уточненная. Она помогает контролировать уровень кислорода и расход топлива, что поможет избежать ненужного расхода горючего в двигателе. Топливная форсунка дает вашему авто потенциал для выполнения задач с высокой степенью точности.

Для разных топливных систем зачастую приходит необходимость для промывки специальным оборудованием .

Сущность схемы непосредственного впрыска в камеру сгорания

Для человека, который не обладает техническим складом ума, разобраться в данном вопросе – задача чрезвычайно сложная. Но все же знание отличий данной модификации двигателя от инжекторной или карбюраторной необходимо. Впервые двигатели с непосредственным впрыском применялись в модели Mercedes-Benz 1954 года выпуска, но большую популярность данная модификация приобрела благодаря компании Mitsubishi под названием Gasoline Direct Injection.

И с тех пор данная конструкция применяется многими известными брендами, такими как:

  • Infinity,
  • Ford,
  • General Motors,
  • Hyundai,
  • Mercedes-Benz,
  • Mazda.

При этом каждая из фирм использует свое название для рассматриваемой системы. Но принцип действия остается одним и тем же.

Росту популярности системы впрыска топлива способствуют показатели ее экономичности и экологичности, так как при ее использовании значительно сокращается выброс вредных веществ в атмосферу.

Основные особенности системы впрыска топлива

Основной принцип работы данной системы состоит в том, что топливо непосредственно впрыскивается в цилиндры двигателя. Для работы системы обычно необходимо наличие двух топливных насосов:

  1. первый располагается в баке с бензином,
  2. второй – на двигателе.

Причем второй является насосом высокого давления, иногда выдающим более 100 бар. Это необходимое условие работы, так как топливо поступает в цилиндр на такте сжатия. Высокое давление является основной причиной особого строения форсунок, которые выполняются в виде уплотнительных тефлоновых колец.

Данная топливная система, в отличие от системы с обычным впрыском, является системой с внутренним смесеобразованием с послойным или однородным образованием топливовоздушной массы. Способ смесеобразования изменяется с изменением нагрузки двигателя. Разберемся в работе двигателя при послойном и однородном образовании топливовоздушной смеси.

Работа при послойном образовании топливной смеси

Из-за особенностей строения коллектора (наличия заслонок, которые закрывают низы) перекрывается доступ к низу. На такте впуска воздух поступает в верхнюю часть цилиндра, после некоторого вращения коленчатого вала на такте сжатия происходит впрыск топлива, который и требует большого давления насоса. Далее полученная смесь сносится при помощи воздушного вихря на свечу. В момент подачи искры бензин уже будет хорошо перемешан с воздухом, что способствует качественному сгоранию. При этом воздушная прослойка создает своеобразную оболочку, которая снижает потери и повышает коэффициент полезного действия, тем самым уменьшая расход топлива.

Следует отметить, что работа при послойном впрыске топлива является наиболее перспективным направлением, так как в этом режиме можно достичь наиболее оптимального сгорания топлива.

Однородное образование топливной смеси

В данном случае происходящие процессы понять еще легче. Топливо и необходимый для сгорания воздух почти одновременно попадают в цилиндр двигателя на такте впуска. Еще до достижения поршнем верхней мертвой точки топливовоздушная смесь находится в смешанном состоянии. Образование высококачественной смеси происходит благодаря высокому давлению впрыска. Система переключается с одного режима работы на другой благодаря анализу поступающих данных. Это в результате и приводит к повышению экономичности двигателя.

Основные недостатки впрыска топлива

Все преимущества системы с непосредственным впрыском топлива достигаются только при использовании бензина, качество которого соответствует определенным критериям. В них и следует разобраться. Требования к октановому числу у системы больших особенностей не имеют. Хорошее охлаждение топливовоздушной смеси достигается и при использовании бензинов, имеющих октановые числа от 92 до 95.

Наиболее жесткие требования выдвигаются именно к очистке бензина, его составу, содержанию свинца, серы и грязи. Серы быть вообще не должно, так как ее наличие приведет к скорому износу топливной аппаратуры и выходу из строя электроники. К числу недостатков также следует отнести увеличение стоимости системы. Это вызвано усложнением конструкции, которое в свою очередь приводит к увеличению себестоимости компонентов.

Итоги

Анализируя вышеприведенную информацию, можно с уверенностью сказать, что система с непосредственным впрыском топлива в камеру сгорания является более перспективной и современной, чем впрыск с распределением. Она позволяет существенно повышать экономичность двигателя за счет высокого качества топливовоздушной смеси. Основным недостатком системы является наличие высоких требований к качеству бензина, большая стоимость ремонта и обслуживания. А при использовании бензина низкого качества потребность в более частом ремонте и обслуживании сильно возрастает.

Где находится клапан ЕГР — чистка или как заглушить EGR Роторный дизель — конструкция двигателя
Тормозная система автомобиля — ремонт или замена Дизель не заводится, неисправности и причины
Система охлаждения двигателя автомобиля, принцип действия, неисправности

Первые системы впрыска были механическими (рис. 2.61), а не электронными, и некоторые из них (например, высокоэффективная система BOSCH) были чрезвычайно остроумными и хорошо работали. Впервые же система механического впрыска топлива была разработа­ на компанией Daimler Benz, а первый серийный автомобиль с впрыском бензина был выпу­ щен еще в 1954 г. Основными преимуществами системы впрыска по сравнению с карбюра­ торными системами являются следующие:

Отсутствие дополнительного сопротивления потоку воздуха на впуске, имеющему место в карбюраторе, что обеспечивает повышение наполнения цилиндров и литровой мощно­ сти двигателя;

Более точное распределение топлива по отдельным цилиндрам;

Значительно более высокая степень оптимизации состава горючей смеси на всех режи­ мах работы двигателя с учетом его состояния, что приводит к улучшению топливной эко­ номичности и снижению токсичности отработавших газов.

Хотя в конце концов оказалось, что лучше для этой цели использовать электронику, которая дает возможность сделать систему компактнее, надежнее и более адаптируемой к требовани­ ям различных двигателей. Некоторые из первых систем электронного впрыска представляли собой карбюратор, из которого удаляли все «пассивные» топливные системы и устанавливали одну или две форсунки. Такие системы получили название «центральный (одноточечный) впрыск» (рис. 2.62 и 2.64).

Рис. 2.62. Агрегат центрального (одноточечного) впрыска

Рис. 2.64. Схема системы центрального впрыска топлива: 1 - подача топлива;

Рис. 2.63. Электронный блок управления 2 - поступление воздуха; 3 - дроссельная четырехцилиндровым двигателем заслонка; 4 - впускной трубопровод; Valvetronic BMW 5 - форсунка; 6 - двигатель

В настоящее время наибольшее распространение получили системы распределенного (многоточечного) электронного впрыска. На изучении этих систем питания необходимо оста­ новиться более подробно.

СИСТЕМА ПИТАНИЯ С ЭЛЕКТРОННЫМ РАСПРЕДЕЛЕННЫМ ВПРЫСКОМ БЕНЗИНА (ТИПА MOTRONIC)

В системе центрального впрыска подача смеси и ее распределение по цилиндрам осущест­ вляются внутри впускного коллектора (рис. 2.64).

Наиболее современная система распределенного впрыска топлива отличается тем, что во впускном тракте каждого цилиндра устанавливается отдельная форсунка, которая в опре­ деленный момент впрыскивает дозированную порцию бензина на впускной клапан соответ­ ствующего цилиндра. Бензин, поступивший

в цилиндр, испаряется и перемешивается с воздухом, образуя горючую смесь. Двига­ тели с такими системами питания обладают лучшей топливной экономичностью и пони­ женным содержанием вредных веществ в отработавших газах по сравнению с кар­ бюраторными двигателями.

Работой форсунок управляет электрон­ ный блок управления (ЭБУ) (рис. 2.63), пред­ ставляющий собой специальный компью­ тер, который получает и обрабатывает элект­ рические сигналы от системы датчиков, сравнивает их показания со значениями,

хранящимися в памяти компьютера, и выда­ ет управляющие электрические сигналы на электромагнитные клапаны форсунок и другие исполнительные устройства. Кроме того, ЭБУ постоянно проводит диагностику

Рис. 2.65. Схема системы распределенного впрыска топлива Motronic: 1 - подача топ­ лива; 2 - поступление воздуха; 3 - дрос­ сельная заслонка; 4 - впускной трубопро­ вод; 5 - форсунки; 6 - двигатель

Системы впрыска топлива и при возникно­ вении неполадок в работе предупреждает водителя с помощью контрольной лампы, установленной в щитке приборов. Серьез­ ные неполадки записываются в памяти бло­ ка управления и могут быть считаны при проведении диагностики.

Система питания с распределенным впрыском имеет следующие составные части:

Система подачи и очистки топлива;

Система подачи и очистки воздуха;

Система улавливания и сжигания паров бензина;

Электронная часть с набором датчиков;

Система выпуска и дожигания отработав­ ших газов.

Система подачи топлива состоит из топ­ ливного бака, электрического бензонасоса, топливного фильтра, трубопроводов и топ­ ливной рампы, на которой установлены форсунки и регулятор давления топлива.

Рис. 2.66. Погружной электрический топливный насос; а - топливозаборник с насо­ сом; б - внешний вид насоса и насосная секция роторного типа топливного насоса с электрическим приводом; в - шестеренчатая; г - роликовая; д - пластинчатая; е - схема работы насосной секции роторного типа: 1 - корпус; 2 - зона всасывания; 3 - ротор; 4 - зона нагнетания; 5 - направление вращения

Рис. 2.67. Топливная рампа пятицилиндрового двигателя с установленными на ней форсунками, регулятором давления и штуцером для контроля давления

Электробензонасос (обычно роликовый) может устанавливаться как внутри бензобака (рис. 2.66), так и снаружи. Бензонасос включается с помощью электромагнитного реле. Бен­ зин засасывается насосом из бака и одновременно омывает и охлаждает электродвигатель насоса. На выходе из насоса имеется обратный клапан, который не позволяет топливу выте­ кать из напорной магистрали при выключенном бензонасосе. Для ограничения давления служит предохранительный клапан.

Поступающее от бензонасоса топливо, под давлением не менее 280 кПа проходит через топливный фильтр тонкой очистки и поступает к топливной рампе. Фильтр имеет металлический корпус, заполненный бумажным фильтрующим элементом.

Рампа (рис.2.67) представляет собой полую конструкцию, к которой крепятся форсунки и регулятор давления. Рампа крепится болтами к впускному трубопроводу двигателя. На рампе также устанавливается штуцер, который служит для контроля давления топлива. Штуцер закрыт резьбовой пробкой для предохранения от загрязнения.

Форсунка (рис. 2.68) имеет металличес­ кий корпус, внутри которого расположен электромагнитный клапан, состоящий из электрической обмотки, стального сер­ дечника, пружины и запорной иглы. В верхней части форсунки расположен не­ большой сетчатый фильтр, предохраняю­ щий распылитель форсунки (имеющий очень маленькие отверстия) от загрязне­ ния. Резиновые кольца обеспечивают не­ обходимое уплотнение между рампой, форсункой и посадочным местом во впуск­ ном трубопроводе. Фиксация форсунки

на рампе осуществляется с помощью спе­ циального зажима. На корпусе форсунки имеются электрические контакты для под-

Рис. 2.68. Электромагнитные форсунки бензинового двигателя: слева - GM, справа - Bosch

Рис. 2.69. Регулятор давления топлива: 1 - корпус; 2 - крышка; 3 - патрубок для вакуумного шланга; 4 - мембрана; 5 - кла­ пан; А - топливная полость; Б - вакуумная полость

Рис. 2.70. Пластмассовый впускной тру­ бопровод с ресивером и дроссельным патрубком

ключения электрического разъема. Регулирование количества топлива, впрыскиваемого форсункой, осуществляется изменением длины электрического импульса, подаваемого на контакты форсунки.

Регулятор давления топлива (рис. 2.69) служит для изменения давления в рампе, в за­ висимости от разрежения во впускном трубопроводе. В стальном корпусе регулятора распо­ ложен подпружиненный игольчатый клапан, соединенный с диафрагмой. На диафрагму, с од­ ной стороны воздействует давление топлива в рампе, а с другой разрежение во впускном трубопроводе. При увеличении разрежения, во время прикрытия дроссельной заслонки, клапан открывается, излишки топлива сливаются по сливному трубопроводу обратно в бак, а давление в рампе уменьшается.

В последнее время появились системы впрыска, в которых отсутствует регулятор давле­ ния топлива. Например, на рампе двигателя V8 автомобиля New Range Rover нет регулятора давления, и состав горючей смеси обеспечивается только работой форсунок, получающих сигналы от электронного блока.

Система подачи и очистки воздуха состоит из воздушного фильтра со сменным фильт­ рующим элементом, дроссельного патрубка с заслонкой и регулятором холостого хода, реси­ вера и выпускного трубопровода (рис. 2.70).

Ресивер должен иметь достаточно большой объем, для того чтобы сглаживались пульса­ ции поступающего в цилиндры двигателя воздуха.

Дроссельный патрубок закреплен на ресивере и служит для изменения количества воз­ духа, поступающего в цилиндры двигателя. Изменение количества воздуха осуществляется с помощью дроссельной заслонки, поворачиваемой в корпусе с помощью тросового приво­ да от педали «газа». На дроссельном патрубке установлены датчик положения дроссельной заслонки и регулятор холостого хода. В дроссельном патрубке имеются отверстия для забо­ ра разрежения, которое используется системой улавливания паров бензина.

В последнее время конструкторы систем впрыска начинают применять электропривод управления, когда между педалью «газа» и дроссельной заслонкой нет механической связи (рис. 2.71). В таких конструкциях на педали «газа» устанавливаются датчики ее положения, а дроссельная заслонка поворачивается шаговым электродвигателем с редуктором. Элект­ родвигатель поворачивает заслонку по сигналам компьютера, управляющего работой дви­ гателя. В таких конструкциях не только обеспечивается четкое выполнение команд водителя, но и имеется возможность влиять на работу двигателя, исправляя ошибки водителя, дейст­ вием электронных систем поддержания устойчивости автомобиля и других современных электронных систем обеспечения безопасности.

Рис. 2.71. Дроссельная заслонка с элект- Рис. 2.72. Индуктивные датчики положе- рическим приводом обеспечивает воз- ния коленчатого и распределительного можность управления двигателем по про- валов

Водам

Датчик положения дроссельной заслонки представляет собой потенциометр, ползунок которого соединен с осью дроссельной заслонки. При повороте дросселя, изменяется электри­ ческое сопротивление датчика и напряжение его питания, которое является выходным сигна­ лом для ЭБУ. В системах электропривода управления дроссельной заслонкой используется не меньше двух датчиков, чтобы компьютер мог определять направления перемещения заслонки.

Регулятор холостого хода служит для регулировки оборотов коленчатого вала двигателя на холостом ходу путем изменения количества воздуха, проходящего в обход закрытой дроссель­ ной заслонки. Регулятор состоит из шагового электродвигателя, управляемого ЭБУ, и конусного клапана. В современных системах, имеющих более мощные компьютеры управления работой двигателя, обходятся без регуляторов холостого хода. Компьютер, анализируя сигналы от много­ численных датчиков, управляет длительностью поступающих к форсункам импульсов электри­ ческого тока и работой двигателя на всех режимах, в том числе и на холостом ходу.

Между воздушным фильтром и патрубком впускного трубопровода устанавливается дат­ чик массового расхода топлива. Датчик изменяет частоту электрического сигнала, посту­ пающего к ЭБУ, в зависимости от количества воздуха, проходящего через патрубок. От этого датчика поступает к ЭБУ и электрический сигнал, соответствующий температуре поступаю­ щего воздуха. В первых системах электронного впрыска использовались датчики, оценива­ ющие объем поступающего воздуха. Во впускном патрубке устанавливалась заслонка, которая отклонялась на разную величину в зависимости от напора поступающего воздуха. С заслон­ кой был связан потенциометр, который изменял сопротивление в зависимости от величины поворота заслонки. Современные датчики массового расхода воздуха работают, используя принцип изменения электрического сопротивления нагретой проволоки или токопроводя- щей пленки при охлаждении ее поступающим потоком воздуха. Управляющий компьютер, получающий также сигналы от датчика температуры поступающего воздуха, может опреде­ лить массу поступившего в двигатель воздуха.

Для корректного управления работой системы распределенного впрыска электронному бло­ ку требуются сигналы и от других датчиков. К последним относятся: датчик температуры охлажда­ ющей жидкости, датчик положения и частоты вращения коленчатого вала, датчик скорости авто­ мобиля, датчик детонации, датчик концентрации кислорода (устанавливается в приемной трубе системы выпуска отработавших газов в варианте системы впрыска с обратной связью).

В качестве температурных датчиков в настоящее время в основном используются полупровод­ ники, изменяющие электрическое сопротивление при изменении температуры. Датчики положе­ ния и скорости вращения коленчатого вала обычно выполняются индуктивного типа (рис. 2.72). Они выдают импульсы электрического тока при вращении маховика с метками на нем.

Рис. 2.73. Схема работы адсорбера: 1 - всасываемый воздух; 2 - дроссельная заслонка; 3 - впускной коллектор двигателя; 4 - клапан продувки сосуда с активированным углем; 5 - сигнал от ECU; 6 - сосуд с активированным углем; 7 - окружающий воздух; 8 - топ­ ливные пары в топливном баке

Система питания с распределенным впрыском может быть последовательной или парал­ лельной. В параллельной системе впрыска, в зависимости от числа цилиндров двигателя, одновременно срабатывают несколько форсунок. В системе с последовательным впрыском в нужный момент времени срабатывает только одна, конкретная форсунка. Во втором слу­ чае ЭБУ должен получать информацию о моменте нахождения каждого поршня вблизи ВМТ в такте впуска. Для этого требуется не только датчик положения коленчатого вала, но и дат­ чик положения распределительного вала. На современных автомобилях, как правило, уста­ навливаются двигатели с последовательным впрыском.

Для улавливания паров бензина, который испаряется из топливного бака, во всех сис­ темах впрыска используются специальные адсорберы с активированным углем (рис. 2.73). Активированный уголь, находящийся в специальной емкости, соединенной трубопроводом с топливным баком, хорошо поглощает пары бензина. Для удаления бензина из адсорбера последний продувается воздухом и соединяется с впускным трубопроводом двигателя, Для того

чтобы работа двигателя при этом не нарушалась, продувка производится только на опреде­ ленных режимах работы двигателя, с помо­ щью специальных клапанов, которые откры­ ваются и закрываются по команде ЭБУ.

В системах впрыска с обратной связью ис­ пользуются датчики концентрации кислоро­ да в отработавших газах, которые устанавли­ ваются в выпускной системе с каталитиче­ ским нейтрализатором отработавших газов.

Каталитический нейтрализатор (рис. 2.74;

Рис. 2.74. Двухслойный трехкомпонент- ный каталитический нейтрализатор отра­ ботавших газов: 1 - датчик концентрации кислорода для замкнутого контура управления; 2 - монолитный блок-носитель; 3 - мон­ тажный элемент в виде проволочной сетки; 4 - двухоболочковая теплоизоляция нейт­ рализатора

2.75) устанавливается в выпускной системе для уменьшения содержания вредных веществ в отработавших газах. Нейтрали­ затор содержит один восстановительный (родий) и два окислительных (платина и пал­ ладий) катализатора. Окислительные ката­ лизаторы способствуют окислению несго- ревших углеводородов (СН) в водяной пар,

Рис. 2.75. Внешний вид нейтрализатора

а окиси углерода (СО) в углекислый газ. Вос­ становительный катализатор восстанавли­ вает вредные оксиды азота NOx в безвредный азот. Так как эти нейтрализаторы снижают в отработавших газах содержание трех вред­ ных веществ, они называются трехкомпо- нентными.

Работа автомобильного двигателя на этилированном бензине приводит к выходу из строя дорогостоящего каталитического нейтрализатора. Поэтому в большинстве стран использование этилированного бен­ зина запрещено.

Трехкомпонентный каталитический нейт­ рализатор работает наиболее эффективно, если в двигатель подается смесь стехиомет- рического состава, т. е. при соотношении воздуха и топлива как 14,7:1 или коэффици­ енте избытка воздуха, равном единице. Ес­ ли воздуха в смеси слишком мало (т. е. мало кислорода), тогда СН и СО не полностью окислятся (сгорят) до безопасного побочного продукта. Если же воздуха слишком много, то не может быть обеспечено разложение N0X на кислород и азот. Поэтому появилось новое поколение двигателей, в которых со­ став смеси регулировался постоянно для получения точного соответствия коэффици­ ента избытка воздуха сс=1 с помощью дат­ чика концентрации кислорода (лямбда-зон­ да) (рис. 2.77), встраиваемого в выпускную систему.

Рис. 2.76. Зависимость эффективности действия нейтрализатора от коэффици­ ента избытка воздуха

Рис. 2.77. Устройство датчика концентра­ ции кислорода: 1 - уплотнительное коль­ цо; 2 - металлический корпус с резьбой и шестигранником «под ключ»; 3 - керамичес­ кий изолятор; 4 - провода; 5 - уплотнитель- ная манжета проводов; 6 - токоподводя- щий контакт провода питания нагревателя; 7 - наружный защитный экран с отверсти­ ем для атмосферного воздуха; 8 - токо­ съемник электрического сигнала; 9 - элек­ трический нагреватель; 10 - керамический наконечник; 11 - защитный экран с отвер­ стием для отработавших газов

Этот датчик определяет количество кислорода в отработавших газах, а его электрический сигнал использует ЭБУ, который соответственно изменяет количество впрыскиваемого топ­ лива. Принцип действия датчика заключается в способности пропускать через себя ионы ки­ слорода. Если содержание кислорода на активных поверхностях датчика (одна из которой контактирует с атмосферой, а другая с отработавшими газами) значительно отличается, про­ исходит резкое изменение напряжения на выводах датчика. Иногда устанавливают два дат­ чика концентрации кислорода: один - до нейтрализатора, а другой - после.

Для того чтобы катализатор и датчик концентрации кислорода могли эффективно работать, они должны быть прогреты до определенной температуры. Минимальная температура, при ко­ торой задерживается 90 % вредных веществ, составляет порядка 300 «С. Необходимо также избегать перегрева нейтрализатора, поскольку это может привести к повреждению наполни­ теля и частично блокировать проход для газов. Если двигатель начинает работать с перебоя­ ми, то несгоревшее топливо догорает в катализаторе, резко увеличивая его температуру. Ино­ гда может быть достаточно нескольких минут работы двигателя с перебоями, чтобы полностью повредить нейтрализатор. Вот почему электронные системы современных двигателей должны выявлять пропуски в работе и предотвращать их, а также предупреждать водителя о серьезно­ сти этой проблемы. Иногда для ускорения прогрева каталитического нейтрализатора после пу­ ска холодного двигателя применяют электрические нагреватели. Датчики концентрации кисло­ рода, применяющиеся в настоящее время, практически все имеют нагревательные элементы. В современных двигателях, с целью ограничения выбросов вредных веществ в атмосфе­

ру во время прогрева двигателя, предварительные каталитические найтрализаторы устана­ вливают максимально близко к выпускному коллектору (рис. 2.78), чтобы обеспечить быст­ рый прогрев нейтрализатора до рабочей температуры. Кислородные датчики установлены до и после нейтрализатора.

Для улучшения экологических показателей работы двигателя необходимо не только со­ вершенствовать нейтрализаторы отработавших газов, но и улучшать процессы, протекаю­ щие в двигателе. Содержание углеводородов стало возможным снизить за счет уменьшения

«щелевых объемов», таких как зазор между поршнем и стенкой цилиндра над верхним ком­ прессионным кольцом и полостей вокруг седел клапанов.

Тщательное исследование потоков горючей смеси внутри цилиндра с помощью компью­ терной техники дало возможность обеспечить более полное сгорание и низкий уровень СО. Уровень NOx был уменьшен с помощью системы рециркуляции отработавших газов путем за­ бора части газа из выпускной системы и подачи его в поток воздуха на впуске. Эти меры и быстрый, точный контроль за работой двигателя на переходных режимах могут свести вредные выбросы к минимуму еще до катализатора. Для ускорения прогрева каталитическо­ го нейтрализатора и выхода его на рабочий режим используется также способ вторичной по­ дачи воздуха в выпускной коллектор с помощью специального электроприводного насоса.

Другим эффективным и распростра­ ненным способом нейтрализации вредных продуктов в отработавших газах является пламенное дожигание, которое основано на способности горючих составляющих отработавших газов (СО, СН, альдегиды) окисляться при высоких температурах. Отработавшие газы поступают в камеру дожигателя, имеющую эжектор, через ко­ торый поступает нагретый воздух из теп­ лообменника. Горение происходит в камере,

Рис. 2.78. Выпускной коллектор двигателя а для воспламенения служит запальная

с предварительным нейтрализатором свеча.

НЕПОСРЕДСТВЕННЫЙ ВПРЫСК БЕНЗИНА

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине XX в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы XIX в., потому что такие двигатели получались дорогостоящи­ ми, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсун­ ки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны уста­ навливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьша­ ется, а значит, для хорошего смесеобразования необходимо подавать бензин под боль­ шим давлением.

Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, ко­ торая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection - непосредственный впрыск бензина) появился в 1996 г. (рис. 2.81). Сейчас двигатели с непосредственным впрыском бензина выпускают Peugeot-Citroen, Renault, Toyota, DaimlerChrysler и другие производители (рис. 2.79; 2.80; 2.84).

Преимущества системы непосредственного впрыска заключаются в основном в улуч­ шении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать

Рис. 2.79. Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Рис. 2.80. В 2000 г. компания PSA Peugeot-Citroen представила свой двухлитровый че­ тырехцилиндровый двигатель HPI с непосредственным впрыском бензина, который мог работать на бедных смесях

на очень бедных смесях. Повышение мощности обусловлено в основном тем, что орга­ низация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается устано­ вить степень сжатия свыше 10 из-за наступления детонации).

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электро­ магнитная форсунка, установленная в го­ ловке блока цилиндров,впрыскивает бен­ зин непосредственно в цилиндр двигателя и может работать в двух режимах. В зави­ симости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей (рис. 2.82). Днище поршня имеет специальную форму в виде сферической выемки (рис. 2.83). Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топли­ во к свече зажигания, установленной по центру камеры сгорания. Впускной трубо­ провод расположен не сбоку, а вертикаль­

Рис. 2.81. Двигатель Mitsubishi GDI - пер­ вый серийный двигатель с системой не­ посредственного впрыска бензина

но сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой ско­ ростью.

Рис. 2.82. Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощ­ ный (а) или компактный (б) факел распыленного бензина

В работе двигателя с системой непосредственного впрыска можно выделить три различ­ ных режима:

1) режим работы на сверхбедных смесях;

2) режим работы на стехиометрической смеси;

3) режим резких ускорений с малых оборотов;

Первый режим используется в том случае, когда автомобиль движется без резких уско­ рений со скоростью порядка 100-120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо ком­ пактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне на­ правляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.

Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движе­ ния требует стехиометрического состава смеси. Смесь такого состава легко воспламеня­ ется, но у двигателя GDI повышена степень

сжатия, и для того чтобы не наступала де­ тонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное то­ пливо заполняет цилиндр и, испаряясь, ох­ лаждает поверхности цилиндра, снижая вероятность появления детонации.

Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель ра­

ботает на малых оборотах. Этот режим рабо­ ты двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для

Рис. 2.83. Поршень двигателя с непосред­ ственным впрыском бензина имеет спе­ циальную форму (процесс сгорания над поршнем)

4. Заказ № 1031.97

Рис. 2.84. Конструктивные особенности двигателя с непосредственным впрыском бен­ зина Audi 2.0 FSI

его охлаждения мощным факелом впрыскивается сверхбедная смесь (а=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.

По сравнению с обычным двигателем с системой питания с распределенным впры­ ском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасыва­ ет в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями тако­ го типа, они очень чувствительны к содержанию серы в бензине.

Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

Рис. 2.85. Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топ­ ливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факе­ лом впрыскивается топливно-воздушная смесь в виде аэрозоля (рис. 2.85).

Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечи­ вает ее хорошее воспламенение.