Принцип работы инжекторного двигателя. Автомеханик говорит. Инжекторная система

Министерство образования и науки Российской Федерации

Сыктывкарский лесной институт филиал

Федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

Санкт-Петербургского государственного лесотехнического университета

им. С.М.Кирова

Факультет ЛТФ

Кафедра АиАХ

Лабораторная работа № 1,2

Дисциплина: ТЭА

Тема: Система питания инжекторного двигателя.

Выполнил Артеева Т. П., гр. 141

Проверил Юшков А. Н., к.т.н.

Зав. кафедрой Чудов В. И., к.т.н.

Сыктывкар – 2011

Содержание Введение…………………………………………………………………………...3

    Устройство системы питания инжекторного двигателя…..…...................4

    Основные неисправности системы питания.……...………………………7

    1. Датчики………………………………………………………………….7

      Форсунки………………………………………………………………..9

      Бензонасос……………………………………………………………..11

    ТО системы питания………….………………..………………………….12

Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально "на лету", так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск - одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск - каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный - все форсунки открываются одновременно. Попарно-параллельный - форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

  1. Устройство системы питания инжекторного двигателя

Рис.1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление - не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – "топливную" и "воздушную". "Воздушная" соединена вакуумным шлангом с ресивером, а "топливная" – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль "газа" разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль "газа", водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

Внедрение в автомобилестроение началось со второй половины ХХ-в и применили инжектор на а/м Goliath GP700 Sport в 1951г. Массовое применение инжекторной системы началось в автомобилестроении в 80-х гг.

Компьютеризация и внедрение в автомобилестроение электронных систем не прошло не замеченным и для инжектора. В настоящее время ни один современный завод не выпускает инжекторные двигатели без электронной системы называемой электронным блоком управления (ЭБУ), электронная система управления двигателем (ЭСУД) или контроллер, все они являются одним прибором, в простонародии их называют «мозгами». Исходя из выше сказанного, инжектор можно характеризовать так - это система подачи топлива, управляемая мозгами, которые, на основании полученных данных от информационных приборов (датчиков), корректируют дозу, момент и частоту впрыска. Из этого определения следует, что ЭБУ это одна из главных составляющих инжектора. Ниже мы рассмотрим системы управляемые контроллером и датчики, от которых приходят данные.
В чем же преимущества инжекторной системы перед карбюратором:

  • уменьшение расхода топлива (внедрение требований к выбросу углеводорода) что в основном побудило автопроизводителей;
  • повышение мощности при равных объемах ДВС (приблизительно на 10%);
  • автоматическая регулировка системы впрыска. Если кто помнит в карбюраторе эту функцию выполнял подсос, регулировочные винты и т.д.

Какие же классификации инжекторной системы бывают:

  • 1. Моновпрыск (центральный впрыск, или одноточечный впрыск) - где одна форсунка осуществляет подачу во впускной тракт (коллектор) на все цилиндры, находящийся на месте карбюратора. В простонародности называют «электронный карбюратор». Сейчас его встретишь только на довольно старых машинах.
  • 2. Распределённый впрыск (многоточечный впрыск) т. е. устанавливается отдельная форсунка во впускном тракте каждого цилиндра или непосредственно осуществляет подачу топлива в камеру сгорания.

В свою очередь распределенный впрыск делится на:
1) Одновременный. За один оборот коленчатого вала все форсунки отрабатывают одновременно. Данная система впрыска встречается редко.
2) Попарно-параллельный. За один оборот коленчатого вала, форсунки отрабатывают парами, т. е. каждая пара срабатывает один раз за оборот. Как и предыдущая классификация система впрыска редко встречается, но может быть вызвана, на системе с последовательным впрыском, неисправным датчиком.
3) Фазированный или последовательный. За один рабочий цикл каждая форсунка открывается один раз непосредственно перед тактом впуска и регулируется отдельно. На данный момент этот тип выпускают практически все авто производители и он является самым массовым. Отличие непосредственного впрыска топлива от выше перечисленных заключается в том, что впрыск происходит непосредственно в цилиндр, где имеется возможность управлять фазой и длительностью впрыска. Давление форсунок данной системы может достигать 200 атмосфер.
Минусами данной системы являются:

  • высокая стоимость ремонта;
  • высокая стоимость узлов;
  • низкая ремонтопригодность элементов;

В отличие от предшественников, данный тип впрыска приводит к закоксовыванию впускного(-ых) клапана(-ов), по причине не омывания топливом, который(-ые) в свою очередь очищались им.
Схема работы инжектора состоит в подаче данных на контроллер от датчиков (основные):

  • Датчик коленчатого вала (ДКВ), сообщает контроллеру о частоте, положении и направлении;
  • Датчик массового расхода воздуха (ДМРВ, волюметр), предназначен для оценки количества всасываемого воздуха и определение его температуры;
  • Датчик температуры охлаждающей жидкости (ДТОЖ), служит для управлением фазой впрыска и зажигания;
  • Датчик положения дроссельной заслонки (ДПДЗ), предназначен для определения нагрузки на двигатель в зависимости от открытия ДЗ, наполнения цилиндров и оборотов;
  • Датчик кислорода в отработавших газах (лямбда-зонд), предназначен для определения в системе выхлопных газов не сгоревшего углеводорода и в связи с этим изменяется время впрыска и происходит корректировка зажигания;
  • Датчик детонации (ДД), предназначен для определения детонации;
  • Датчик распределительного вала (ДРВ) или Датчик Фазы (ДФ), служит для точного синхронного впрыска. При аварийном режиме двигателя или отсутствие такого датчика, система переходит на попарно - параллельную (групповую) подачу топлива;
  • Датчик температуры всасываемого воздуха, может быть установлен отдельно, или сразу встроен в ДМРВ.

На основе полученных данных с информационных датчиков, ЭБУ управляет следующими системами (основные):

  • форсунками - предназначены для впрыска топлива;
  • электро бензонасосом - служит для образования давления в системе подачи топлива;
  • модулем зажигания (МЗ) - предназначен для искрообразования на свече. В последнее время на каждую свечку идет свой МЗ;
  • регулятором холостого хода (РХХ или ХХ) предназначен для поддержании заданных оборотов ХХ;
  • вентилятором системы охлаждения двигателя, управляется по сигналам ДТОЖ.

Недостатками инжекторной системы является: низкая ремонтопригодность;

  • требовательность к топливу;
  • необходимость специального оборудования для определения неисправности;
  • высокая стоимость элементов (не для каждого типа инжектора).
  • точно определить неисправность и диагностировать инжекторный двигатель может только специалист.

Основной проблемой инжекторных двигателей является выход из строя датчиков, которая решается заменой. На примере датчика массового расхода воздуха (ДМРВ), признаки неисправности:
сигнальная лампа о неисправности двигателя;
слабая динамика; плавающие обороты двигателя на холостом ходу;
невозможность завести горячий двигатель.
Проверить исправность (ДМРВ) можно несколькими способами:
Диагностическим оборудованием;
Отключение (ДМРВ). В этом случае система управления двигателем начинает работать в аварийном режиме;
Замена на заведомо исправный;
Визуальный осмотр.

Переход с карбюраторной системы подачи топлива на инжекторную получился более чем удачным, хоть и имеются у этой системы недостатки. Если стоит выбор между инжектором и карбюратором, однозначно отвечу, выбирайте первое. Если выбирать между последовательный и непосредственным то я лично выбираю последовательный впрыск, по причине меньших проблем.

Инжекторный двигатель (двигатель с инжектором, англ. electronic fuel injection engine) — современный тип , оснащенный инжекторной системой топливного впрыска, которая пришла на смену моторам с . Сегодня новые бензиновые автомобили оснащаются исключительно инжектором, так как данное решение способно обеспечить силовой установке необходимое соответствие строгим нормам касательно экономичности и токсичности отработавших газов.

Карбюратор проигрывает инжектору по общим показателям эффективности, так как инжекторные двигатели стабильнее работают, автомобиль получает улучшенную динамику разгона. Инжекторный агрегат потребляет меньше топлива, содержание вредных веществ в выхлопе снижается, так как топливо сгорает более полноценно. Управление системой полностью автоматизировано (в отличие от карбюратора), то есть не требует ручной подстройки во время эксплуатации. Что касается , система впрыска дизтоплива на таких моторах имеет ряд конструктивных отличий, хотя общий принцип работы инжектора на дизеле остается похожим на бензиновые аналоги.

Читайте в этой статье

Чем отличается инжекторный двигатель от карбюраторного

Инжектор представляет собой принципиально другой способ подачи топлива в камеру сгорания по сравнению с карбюратором. Другими словами, в инжекторном моторе наибольшие конструктивные изменения коснулись . В карбюраторном двигателе бензин смешивается с определенной частью воздуха во внешнем устройстве (карбюраторе).

После образовавшаяся топливно-воздушная смесь всасывается в цилиндры двигателя. Инжекторный двигатель имеет специальные инжекторные форсунки, которые дозировано впрыскивают горючее под давлением, после чего происходит смешение порции топлива с воздухом. Если сравнивать эффективность подачи горючего инжектором и карбюратором, мотор с инжектором оказывается до 15% мощнее. Также отмечается существенная экономия топлива на разных режимах работы двигателя.

Разновидности инжекторов

Инжекторные системы топливного впрыска делятся на несколько подвидов:

  • одноточечный впрыск (моновпрыск);
  • распределенный впрыск;
  • прямой (непосредственный) впрыск;

Такое деление напрямую зависит от общего количества установленных форсунок, а также от места впрыска самого топлива. Одноточечная система является самой ранней разработкой и предполагает наличие только одной инжекторной форсунки во . Другими словами, форсунка одна для всех цилиндров двигателя. Данное решение имеет ряд недостатков, что и привело к ее быстрому исчезновению.

Следующим витком развития инжектора после моновпрыска стал распределенный впрыск, что означает наличие коллектора и отдельных форсунок, которые устанавливаются над впускным клапаном каждого цилиндра. Непосредственный впрыск топлива является новейшей инжекторной системой. Принцип работы заключается в том, что форсунка устанавливается так, чтобы подавать топливо прямо в цилиндр двигателя (непосредственно в камеру сгорания), а не в коллектор. Местом расположения форсунок в этой системе стали головки цилиндров. Данная система в большой мере напоминает принцип топливоподачи и смесеобразования в дизельных двигателях.

Также каждая из систем дополнительно делится по типу впрыска. Что касается распределенного впрыска, такое решение может быть одновременным (все форсунки впрыскивают горючее). Также впрыск может быть попарно-параллельным (форсунки открываются парами), когда одна форсунка начинает открытие перед впрыском топлива, а другая перед тактом выпуска. Также отмечается фазированный впрыск (форсунка открывается перед тактом впуска) и прямой впрыск непосредственно в цилиндр.

Как устроен и работает инжектор

Устройство инжектора предполагает в основе наличие следующих базовых компонентов системы:

  • электронный блок управления ();
  • инжекторные форсунки;
  • топливная рампа с регулятором давления;
  • электронные датчики температуры, угла открытия дроссельной заслонки , и т.д.

Для лучшего понимания принципа работы инжектора давайте поверхностно рассмотрим, как компоненты системы взаимодействуют между собой на примере распространенного типа инжекторных двигателей с многоточечным распределенным впрыском. После поворота ключа зажигания питание подается на электрический бензонасос, который находится в топливном баке и погружен в горючее. Указанный насос подает топливо в топливную магистраль под определенным давлением. Инжекторные форсунки установлены в топливной рампе (рейке), через которую реализован подвод топлива к форсункам, а также осуществлена фиксация самих форсунок на впускном коллекторе. В рампе также установлен регулятор давления топлива, который служит для поддержания разницы между давлением воздуха во впуске и в самих инжекторах.

Благодаря установленным датчикам контроллер ЭБУ получает информацию, на основании которой удается синхронизировать впрыск в соответствии с режимами и условиями работы ДВС. Блок управления получает показания от датчика температуры двигателя, кислородного датчика, (датчика Холла) и датчика коленвала. Так удается скорректировать количество подаваемого топлива в каждый цилиндр, гибко и динамично изменять состав топливно-воздушной смеси и т.д.

Если сказать иначе, для точного впрыска топлива необходимо подать горючее на форсунки под давлением, которое создает бензонасос в . Далее ЭБУ посылает на форсунки управляющие импульсы. Данные импульсы заставляют форсунку открываться на нужный промежуток времени, который зависит от конкретного режима работы двигателя, нагрузки на мотор, степени нажатия на педаль газа и ряда других факторов. Информация о продолжительности импульсов на форсунки и нужном количестве топлива во время впрыска рассчитывается ЭБУ с учетом показаний от электронных датчиков.

Датчики фиксируют различные изменения в работе двигателя и меняющиеся условия, постоянно передавая сигналы на блок управления. Данная схема позволяет затрачивать строго определенное количество топлива во время запуска, прогрева, работы на холостых оборотах, спокойной или динамичной езды и т.д.

Указанная точность во время дозирования горючего возможна только благодаря работе управляющей электроники автомобиля в виде совокупности датчиков и ЭБУ двигателем. В блоке управления прошиты микропрограммы, а сама работа основывается на так называемых топливных картах. Датчики непрерывно подают информацию о режиме работы двигателя, о скорости движения ТС и т.д. Контроллер получает и обрабатывает данные, после чего определяет необходимое количество впрысков топлива и их продолжительность по времени. Любые изменения в работе ДВС считываются датчиками и заставляют ЭБУ динамично вносить коррективы в работу инжектора.

Выдающаяся экологичность инжектора стала возможной благодаря наличию кислородного датчика (лямбда зонда). Указанный датчик находится в выпускной системе и «оценивает» состояние выхлопных газов. На основании его показаний ЭБУ обедняет или обогащает топливно-воздушную смесь (изменяет соотношение количества воздуха и топлива в составе рабочей смеси) во время работы двигателя в большинстве стандартных режимов.

Преимущества и недостатки инжекторных двигателей

Если сравнивать инжектор с карбюратором, тогда первое решение удобнее эксплуатировать, но определенно дороже и сложнее ремонтировать. Простой карбюратор представляет собой механическое устройство, которое требует периодического обслуживания. Двигатели с карбюратором сильнее коксуются, могут с трудом запускаться в холодное время года, перерасходуют горючее, также мотор может нестабильно работать в сильную жару и т.д.

Карбюратор имеет меньший ресурс по сравнению с инжектором. По этой причине карбюратор нужно постоянно чистить, промывать и подстраивать. Неоспоримым плюсом карбюратора является его простота и неприхотливость к качеству топлива, благодаря чему научиться ремонтировать и настраивать карбюратор своими руками может практический каждый автовладелец у себя в гараже.

В случае с инжекторными ДВС главными плюсами являются: экономичность, легкий запуск двигателя и стабильность работы мотора в любых условиях, а также низкий расход топлива. Мотор с инжектором лучше реагирует на педаль газа, не так часто и сильно заливает бензином, двигатель меньше подвержен . При этом определить неисправность инжектора в случае неисправности бывает намного сложнее.

Частые неисправности инжектора

Так как инжектор является сложной многокомпонентной системой, со временем отдельные элементы могут выходить из строя. Главной задачей инжектора является максимально возможная эффективность сгорания топлива, которая достигается благодаря поддержанию строго определенного состава рабочей смеси топлива и воздуха.

  1. В результате любой сбой в работе электронных датчиков приводит к дисбалансу в работе всей инжекторной системы, двигатель может или не заводиться, отмечается изменение и т.д. В отдельных случаях ЭБУ может перевести мотор в аварийный режим. Силовой агрегат в такой ситуации не набирает обороты, на приборной панели горит «check» и т.п.
  2. Еще одной причиной неисправностей инжектора является загрязнение фильтрующих элементов в системе топливоподачи или самих инжекторных форсунок в результате использования бензина низкого качества. Для поддержания работоспособности топливный фильтр нужно своевременно менять. Не меньше внимания, особенно на автомобилях с пробегом более 50-70 тыс. км, заслуживает сетка-фильтр бензонасоса. Указанную . Также желательно один раз в несколько лет мыть топливный бак параллельно замене или очистке указанной сетки-фильтра грубой очистки топливного насоса.

    Отметим, что важно определять и устранять неисправность инжектора своевременно, так как сбои в его работе могут существенно ухудшить общее состояние ДВС и привести к другим поломкам. Что касается засорения топливных форсунок, в этом случае двигатель хуже заводится, теряет мощность и начинает расходовать больше топлива. Нарушение формы факела распыла топлива (особенно в моторах с прямым впрыском) приводит к локальным перегревам, и т.д.

  3. Также форсунки могут «лить» топливо, то есть не закрываться после прекращения импульса от ЭБУ. В этом случае избытки топлива попадают в камеру сгорания, затем могут проникать в выпускную систему и в систему смазки двигателя через неплотности в местах установки . В таких ситуациях сильно страдает весь двигатель, так как бензин разжижает масло и смазка нагруженных деталей ухудшается. Наличие топлива в выхлопной системе выводит из строя каталитический нейтрализатор (катализатор), который очищает отработавшие газы от вредных соединений.

Для предотвращения неисправностей инжектора форсунки необходимо периодически очищать. Дело в том, что наличие фракций и примесей в бензине постепенно загрязняет инжекторы, что и снижает их производительность, а также нарушает качество распыла топлива. Почистить форсунки можно двумя способами: со снятием или прямо на машине. Процедура очистки инжекторных форсунок на автомобиле предполагает то, что через инжекторы пропускается специальная промывочная жидкость для чистки инжектора. Способ заключается в том, что от топливной рампы отсоединяется топливная магистраль, после чего вместо бензонасоса в систему начинает качать промывочную жидкость специальный компрессор вместо бензонасоса.

Еще одним вариантом чистки инжектора является очистка со снятием форсунок в ультразвуковой ванне или на специальном промывочном стенде. Что касается ультразвука, форсунки помещаются в специальный аппарат или ванну, где волновые колебания «разбивают» отложения. Промывка форсунок со снятием на стенде представляет собой процедуру, когда имитируется работа форсунок в двигателе, при этом вместо бензина через них пропускается промывочная жидкость. Отметим, что каждый из этих способов имеет свои преимущества и недостатки, о которых можно прочитать в нашей отдельной статье .

Эксплуатация автомобиля на топливе в условиях СНГ обязывает владельца осуществлять замену топливного фильтра каждые 10-15 тыс. км. пробега и периодическую чистку инжекторных форсунок. Данную процедуру желательно производить каждые 30-35 тыс. км. пробега. Дополнительно рекомендуется приобретать топливо только на крупных АЗС с хорошей репутацией.

В целях профилактики можно использовать специальные очистители топливной системы, которые заливаются в топливо для поддержания чистоты инжектора. Отметим, что данные присадки в топливо целесообразно применять только на новых автомобилях или после глубокой очистки топливной системы. Если форсунки уже грязные, тогда необходимо промывать инжектор отдельно.

Не следует ждать того момента, когда проявятся симптомы загрязнения инжектора в виде проблем с работой двигателя. Лучше промывать форсунки заранее. Например, перед каждым вторым плановым ТО. Обратите внимание, в случае использования способа очистки промывочными жидкостями оптимально осуществлять данную процедуру до замены моторного масла.

Напоследок добавим, что снижение производительности форсунок может быть вызвано неполадками бензонасоса. В этом случае необходимо замерить давление в топливной рампе. Если показатели окажутся ниже рекомендуемых, тогда потребуется . Также следует учитывать, что установка более производительных форсунок во время может потребовать обязательной замены топливного насоса.

Использование устройств с подобным алгоритмом действия поначалу коснулся авиастроительного производства. Ужесточение экологических норм привело к тому, что многие производители автомобилей отказались от применения карбюраторных двигателей, дальнейшее усовершенствование которых не приводило к желаемому результату.

Управление системой впрыскивания топлива проводится автоматизированной системой или бортовым компьютером. Проводится проверка состояния воздушно-топливной смеси и при ее соответствии происходит последовательный впуск топлива непосредственно во впускной клапан. Так обеспечивается более точный расход, а также быстрое сгорание топлива.

Устройство инжекторного двигателя можно охарактеризовать выполнением следующей последовательности:

  1. Нажатие на педаль газа открывает дроссельную заслонку. Это обеспечивает поступление воздуха в двигатель.
  2. Компьютер анализирует объем поступающего воздуха (в зависимости от усилия нажатия педали), после чего дает команду для подачи оптимального объема топлива.
  3. Специальный датчик контролирует количество поступающего в двигатель кислорода и его соответствие объему топлива.
  4. Топливный нанос перекачивает необходимый объем, после чего происходит его впрыск под давлением. В результате образуется мелкодисперсный туман, который быстро сгорает, приводя в движение механизмы вращения движущихся частей мотора.

Даже упрощенная схема показывает, насколько сложным является процесс движения автомобиля. Работа двигателя инжектора представляет собой замкнутую систему, в которой значение имеет каждая деталь. При выходе из строя любой составляющей, сигнал об этом поступает на электронную систему, после чего компьютер сам принимает решение о возможность дальнейшего движения. Это одновременно является достоинством и недостатком такого механизма, ведь при измененных условиях труда раскачать «вручную» систему не получиться, придется обращаться за квалифицированной помощью.

В чём особенности устройства?

Как показывает приведенная информация, главным отличием от более старых карбюраторных моделей является автоматическая подача топлива. Это ключевой момент, определяющий преимущества использования инжекторного устройства. Кроме того, существует еще несколько пунктов, которые выгодно отличают разницу между инжектором и карбюратором.

Ключевые отличия:

  • За счет того, что в карбюраторном двигателе создается определенный уровень давления, позволяющий засасывать воздушно-топливную смесь, а в инжекторе она подается автоматически, экономится мощность отдачи. Это позволяет в целом увеличить производительность авто на 10%. Показатель небольшой, но при длительной эксплуатации это существенная экономия топлива.
  • Быстрое реагирование на изменение условий движения. В инжекторе практически моментально происходит увеличение или уменьшение подачи топлива. Это позволяет маневрировать на дороге гораздо быстрей.
  • Система впрыскивания топлива обеспечивают легкий запуск двигателя.
  • Инжекторное устройство менее чувствительно к измененным погодным условиям. Расход топлива будет экономиться за счет того, что не требуется длительный прогрев двигателя.
  • Также такие устройства соответствуют более строгим современным экологическим стандартам. Уровень вредных выбросов, как правило, ниже на 50-70%, что в современном мире просто необходимо.

Среди главных недостатков - полная зависимость системы от исправности всех элементов. Инжектор снабжен несколькими датчиками, которые анализируют параметры топлива и условия эксплуатации. При выходе электроники из строя может понадобиться дорогостоящий ремонт.

Также при эксплуатации авто с инжекторным двигателем необходимо тщательней следить за состоянием используемого топлива. Форсунки, обеспечивающие подачу и распыление воздушно-топливной смеси, часто забиваются при использовании некачественного бензина. Вместе с тем, этот критерий очень сложно контролировать, особенно при длительной поездке, когда приходится заправляться на непроверенных точках. К недостаткам также можно отнести дорогостоящий ремонт в случае поломок. Самостоятельная починка электронной части на практике оказывается неудачным решением и может привести к необходимости восстановления системы, а это стоит немало.

Главным центром управления инжектора является ЭБУ - электронный блок управления. В его задачи входит непосредственный контроль над работой всех систем, расходом и подачей топлива, а также сигнализирование о возможных неполадках в работе автомобиля. Отчеты о возможных сбоях в системе и алгоритм правильной работы храниться в специальных ячейках памяти,

В зависимости от модели, обычно есть три типа памяти устройства:

  1. ППЗУ требует однократного программирования, после чего сохраняются все алгоритмы действия для управления системой. Чип хранится на плате блока, при необходимости подлежит замене. Информация не подлежит удалению при сбоях сети, корректированию не поддается.
  2. ОЗУ - оперативное запоминающее устройство. Относится к временному хранилищу файлов. Также служит местом для расчета и анализа полученной информации. Располагается ОЗУ на печатной плате блока, при сбоях в сети информация стирается.
  3. ЭПЗУ представляет собой электрически программируемое запоминающее устройство. В основном используется для хранения информации для противоугонной системы (коды и пароли владельца). При нарушении ввода данных, двигатель не заведется. Такое хранилище не зависит от данных сети, информация сохраниться при любых ситуациях.

Заслонка, позволяющая контролировать впрыск топлива в систему, называется форсункой. Используется два типа системы подачи топлива. Моновпрыск сейчас практически не используется. При таком расположении форсунки топливо подается вне зависимости от открытия впускного клапана двигателя. К тому же, такое управление мало контролируется электроникой. Второй вид - распределительный впрыск представлен более совершенной системой. Благодаря нескольким форсункам, расположенным непосредственно вблизи каждого цилиндра, происходит направленный доступ горючего. Такая система четко регламентирует подачу топлива, а также увеличивает производительность двигателя. Тип управления инжектором также определяется ЭБУ и может быть точечным и последовательным.

Каталитический нейтрализатор

Этот элемент системы инжекторного двигателя предназначен для контроля выхлопов авто. Для его работы необходим датчик содержания кислорода в выхлопных газах (лямбда-зонд). При превышении допустимых значений проводится корректировка впрыска топлива, а также проводится процесс рециркуляции отработанных газов. Кроме того, в системе предусмотрены специальные катализаторы, уменьшающие содержание вредных примесей после сжигания топлива.

Датчики

Сложная система электронного управления подразумевает проверку и регулировку нескольких датчиков. При выходе из строя хотя бы одного элемента, ЭБУ выдает ошибку.

Основные датчики инжекторного двигателя:

  • ДМРВ (датчик массового расхода воздуха). Обеспечивает информацию о массе воздуха, поступающего в двигатель.
  • Лямбда-зонд (датчик кислорода). Определяет содержание кислорода в воздушно-топливной смеси. При помощи такой информации ЭБУ может выявить изменения топливной смеси и откорректировать ее значения.
  • Датчик дроссельной заслонки. Контролирует положение дроссельной заслонки, согласно которому блок управления может реагировать, увеличивая или сокращая подачу топлива по мере необходимости.
  • Датчик напряжения. Контролирует напряжение бортовой сети машины. Показания датчика при необходимости заставляют блок управления увеличить число оборотов холостого хода, если напряжение понижено (чаще всего при высоких электрических нагрузках).
  • Датчик контроля температуры охлаждающей жидкости. Дает сигнал о прогреве двигателя, после чего ЭБУ запускает работу других систем.
  • Датчик абсолютного давления. Следит за показателем давления во впускном коллекторе. От количества воздуха, которое поступает в двигатель, меняется потребление топливной смеси. Также этот показатель используется при определении производительности авто.
  • Датчик вращения коленвала. Скорость вращения коленчатого вала – один из определяющих факторов, которые влияют на расчет необходимой длительности импульса.

Преимущества инжектора уже оценили многие автолюбители. Снижается расход топлива, повышается производительность автомобиля, а также облегчается процесс его управления. Работа инжекторного двигателя обеспечивается непосредственным впрыском топлива в систему, на основании проанализированных данных о параметрах топливной смеси и режиме эксплуатации двигателя. Как работает инжекторный двигатель, его преимущества и недостатки по сравнению с карбюраторным устройством рассмотрены в нашей статье.

ЭБУ управляет дозировкой топливной смеси и своевременным поджогом ее в каждом цилиндре двигателя. Дозировкой топлива занимается инжектор. Зажигание обеспечивает поджиг топливной смеси.

Воздух необходимый для осуществления впрыска и поджога подается "естественным" путем. Мотор всегда самостоятельно всасывает нужный объем воздуха, но для снижения мощности двигателя, подаваемое количество воздуха в систему может быть больше необходимого и должно быть ограничено. Обычно двигатель не нуждается в постоянной максимальной мощности, поэтому большую часть времени работы мотора, подача воздуха,как правило, принудительно ограничивается. Если автомобиль оснащен турбиной - воздух принудительно нагнетается в двигатель, но сути это не меняет. Подача всегда будет такой, какая необходима для нормальной работы, а регулируется количество воздуха самим водителем при помощи педали.
Оптимальное количества воздуха, которое необходимо для полного сжигания подаваемого в цилиндр топлива, является соотношение
Если топливо подается больше этого соотношения "богаче" то увеличивается мощность ДВС, но при этом топливо не сгорает полностью, что ведет к его большому расходу.
Если топлива поступает меньше т.е.смесь "беднее" то происходит обратный процесс, который может привести к перегреву двигателя.

Из этого следует, что для того чтобы узнать требуемое количества топлива, нужно знать сколько воздуха поступает в двигатель.

Для измерения этого показателя используют ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА (ДМРВ). В википедии об этом устройстве можно прочитать следующее: "ДМРВ состоит из двух платиновых нитей, которые нагреваются при помощи электрического тока. Через одну нить проходит воздух, охлаждая её, вторая нить является контрольной. Количество поступаемого в двигатель воздуха вычисляется по тому, как изменяется ток проходящий через охлаждаемую воздухом платиновую нить."

Очень интересное и позновательное видео, рассказывающее для чего нужен осцилограф и мотор-тестер.

Для того, чтобы "МОЗГИ или ЭБУ" точно могли вычислить момент подачи топлива в двигатель для воспламенения смеси, на коленвале установлен ДАТЧИК ПОЛОЖЕНИЯ КОЛЕНВАЛА(ДПКВ).

Для получения еще большей информации о точном времени воспламенения, применяется еще один датчик, похожий на ДПКВ но установленный на распредвале и называется он ДАТЧИК ПОЛОЖЕНИЯ РАСПРЕДВАЛА(ДПРВ).

Это основные датчики необходимые для того, чтобы знать потребность в необходимом количестве топлива, а также момент в который совершать поджиг подаваемой смеси.

Теперь рассмотрим работу исполнительных механизмов этого процесса.

ИНЖЕКТОРЫ, или как их называют в простонародье, ФОРСУНКИ предназначены для подачи топлива в цилиндр. Форсунка это электромеханический клапан на который подведен топливопровод высокого давления и два электрических проводка. Подали напряжение на выводы - открылась форсунка, отключили ток - закрылась форсунка. Чем прододжительнее будет время открытия форсунки, тем большее количество топлива попадет в двигатель.

Естественно для поджога подаваемой в двигатель смеси применяется как и раньше свеча зажигания получая необходимый, увеличенный ток от катушки.

Для более точного измерения подаваемого в двигатель воздуха применяются также: ДАТЧИК ТЕМПЕРАТУРЫ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ(ДТОЖ), замеряющий температуру двигателя.
ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА, который идентичен ДТОЖ но замеряющий температуру поступающего в двигатель воздуха.

С помощью этих датчиков производится корректировка подачи топлива на холодном двигателе, для работы которого нужно больше топлива.

Для того, чтобы двигатель не глох а работал с отпущенной педалью газа(холостой ход), применяется специальный исполнительный механизм-регулятор холостого хода(РХХ). РХХ представляет собой шаговый двигатель, при помощи которого через специальный канал в двигатель, в обход дроссельной заслонки, которая перекрывает воздух при отпущенной педали- ПОДАЕТСЯ ВОЗДУХ. ЭБУ через РХХ открывает канал и не позволяет двигателю заглохнуть. Снизились обороты- клапан приоткрывается, повысились-клапан закрывается.

Для того, чтобы ЭБУ мог определить с каким усилием водитель давит на педаль газа, добиваясь определенной скорости, на узле ДРОССЕЛЬНОЙ ЗАСЛОНКИ установлен ДАТЧИК ПОЛОЖЕНИЯ ДРОССЕЛЬНОЙ ЗАСЛОНКИ(ДПДЗ). Если взглянуть на него с технической точки зрения, то это всего-навсего потенциометр, работа которого заключается в измерении угла поворота оси дроссельной заслонки. ЭБУ узнает от ДПДЗ что нужно двигателю: увеличивать порцию подаваемого топлива или включить режим холостого хода.

Всех этих датчиков и исполнительных механизмов было бы достаточно, но экологи не дремлют и заставляют автопроизводителей с каждым годом повышать экологические нормы, лезут уже в глушителя автомобиля, требуя от производителя не только заявлять эконормы, но и постоянно контролировать и снижать выбросы до заявленного значения на выходе работающего автомобиля. Поэтому автомобилестроители вынуждены были вмонтировать не только КАТАЛИЗАТОР, снижающий вредные выбросы в атмосферу но и датчик контролирующий количество несгоревшей смеси и падающий эти значения на ЭБУ, для соответствующей корректировки. Эту функцию выполняет так называемый "лямбда зонд" или ДАТЧИК КИСЛОРОДА. ЭБУ анализирует состав выхлопных газов, сгорело не все - сокращает подачу топлива, сгорает подчистую - увеличивает подачу. Эти устройства требуют определенной температурный режим, поэтому на последних моделях установлен подогревающий элемент.

Если один или даже несколько датчиков выходят из строя, ЭБУ определяет, что датчики показывают неправильные значения и перестает на них реагировать, а на панели приборов зажигает "check engine". С такой неисправностью вы доезжаете до СТО.

"Как работает инжекторный двигатель"