Урок "экологическая характеристика видов топлива". Экологические виды топлива

Автомобильный транспорт как источник загрязнения окружающей среды. Причины образования токсичных компонентов в отработанных газах ДВС

В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. Выпускные газы двигателей внутреннего сгорания (ДВС) состоят в основном из безвредных продуктов сгорания топлива – углекислого газа и паров воды. Однако в относительно небольшом количестве в них содержатся вещества, обладающие токсическим и канцерогенным действием. Это окись углерода, углеводороды различного химического состава, окислы азота, образующиеся в основном при высоких температуре и давлении.

При горении углеводородного топлива происходит образование токсичных веществ, связанное с условиями горения, составом и состоянием смеси. В двигателях с принудительным воспламенением концентрация окиси углерода достигает больших значений из-за недостатка кислорода для полного окисления топлива при их работе на богатой топливом смеси.

При движении автомобилей в городе и на дорогах с переменным уклоном и часто меняющимися скоростями с включенной передачей и открытой дроссельной заслонкой двигателям приходится около 1/3 путевого времени работать в режиме принудительного холостого хода. На принудительном холостом ходу двигатель не отдает а, напротив, поглощает энергию, накопленную автомобилем. При этом нерационально расходуется топливо, усиленное всасывание которого приводит к наибольшему выбросу токсичных газов СО и СН в атмосферу.

Автомобильные выхлопные газы - смесь примерно 200 веществ. В них содержатся углеводороды-не сгоревшие или не полностью сгоревшие компоненты топлива, доля которых резко возрастает, если двигатель работает на малых оборотах или в момент увеличения скорости на старте, т.е. во время заторов и у красного сигнала светофора. Именно в этот момент, когда нажимают на акселератор, выделяется больше всего несгоревших частиц: примерно в 10 раз больше, чем при работе двигателя в нормальном режиме. К несгоревшим газам относят и обычную окись углерода, образующуюся в том или ином количестве повсюду, где что-то сжигают. В выхлопных газах двигателя, работающего на нормальном бензине и при нормальном режиме, содержится в среднем 2,7% оксида углерода. При снижении скорости эта доля увеличивается до 3,9%, а на малом ходу-до 6,9%.

Основными эксплуатационными факторами, влияющими на уровень вредных выбросов двигателей, являются факторы, характеризующие состояние деталей цилиндропоршневой группы (ЦПГ). Повышенный износ деталей ЦПГ и отклонения от их правильной геометрической формы являются причиной увеличения концентрации токсичных компонентов в отработавших газах (ОГ) и картерных газах (КГ).

Базовой деталью ЦПГ, от которой зависит работоспособность и экологичность двигателя, является цилиндр, т. к. герметичность камеры сгорания зависит от уплотняющей способности кольца в сопряжении с цилиндром. От технического состояния цилиндров и поршневых колец главным образом зависит интенсивность роста зазоров между кольцами и канавками поршней. Таким образом, контроль и регулировка зазора между кольцом и цилиндром в процессе эксплуатации являются существенным резервом снижения количества вредных примесей в ОГ и КГ посредством улучшения условий сгорания топлива и снижения количества масла, оставшегося в надпоршневом пространстве.

Токсичными выбросами ДВС являются отработавшие и картерные газы. С ними поступает в атмосферу около 40% токсичных примесей от общего выброса. Содержание углеводородов в отработавших газах зависит от технического состояния и регулировок двигателя и на холостом ходу колеблется от 100 до 5000% и более. При общем небольшом количестве картерных газов равном 2-10% отработавших газов в общем загрязнении атмосферы, доля картерных газов составляет около 10% у мало изношенных двигателей и вырастает до 40% при эксплуатации двигателя с изношенной цилиндропоршневой группой, т.к. концентрация углеводородов в картерных газах в 15-10 раз выше, чем в отработавших двигателя. Количество КГ, а так же их химический состав зависят от состояния деталей ЦПГ, осуществляющих уплотнение камеры сгорания. От величины зазоров между трущимися деталями ЦПГ зависит проникновение газов из цилиндра в картер и обратно. При этом увеличивается доля углеводородов с канцерогенными свойствами из-за повышенного угара масла и увеличенного расхода картерных газов через замкнутую систему вентиляции картера.

К достижению предельного износа двигателя выбросы увеличиваются в среднем на 50%. На примере ускоренных испытаний, проведенных в НАМИ, установлено что износ двигателя увеличивает выбросы ОГ углеводородов в 10 раз. Основная масса двигателей с повышенной дымностью ОГ приходится на двигатели, прошедшие капитальный ремонт.

Степень разуплотнения камеры сгорания зависит от износа деталей ЦПГ, отклонения их макрогеометри от правильной геометрической формы. При увеличении неплотностей камеры сгорания происходит возрастание СО и СН и снижение СО2 в результате ухудшения условий сгорания топлива. Кроме снижения качества организации рабочего процесса, зазоры между кольцом и цилиндром, а также зазоры между кольцом и канавкой поршня приводят к увеличению количества масла, попавшего в надпоршневое пространство, к увеличению отклонения от заданной динамики тепловыделения в процессе сгорания, а, следовательно, - к увеличению общей массы токсических выбросов. Масло составляет 30-40% твёрдых частиц ОГ.

Базовой деталью ЦПГ является цилиндр, от которого зависит экономическая и экологическая целесообразность эксплуатации двигателя. Износ гильз цилиндров имеет выраженную форму овала, большая ось которого расположена в плоскости качания шатуна. Причиной образования овальности цилиндров главным образом является увеличенная нагрузка поршней на гильзы именно в плоскости качания шатунов. На овальность цилиндров влияет также несовершенство технологии сборки блока цилиндров. Изменение макрогеометрии цилиндров (овальности и конусности) после сборки двигателя также приводит к ухудшению прилегания поршневых колец к зеркалу цилиндра. Известно, что при установке гильз в блоки различных марок ДВС, овальность в цилиндрах увеличивается в 2-3 раза.

Очень важно отметить, что характер искажения макрогеометрии гильз цилиндров после сборки и в процессе эксплуатации одинаков для большинства конструкций блоков цилиндров с “мокрыми гильзами”. Большая ось овала цилиндра, образующегося при сборке, в зоне остановки верхнего компрессионного кольца в верхней мёртвой точке поршня имеет такую же направленность, как и большая ось овала, образующегося при эксплуатации. Такой характер деформации цилиндров объясняется большей деформацией блока в местах между расточками под гильзы.

Снижение овальности цилиндров способствует снижению интенсивности износа колец и канавок поршней, что в целом способствует улучшению работы поршневых колец и улучшению уплотнения камеры сгорания. Известно, что замена маслосъёмных колец после выработки предельного ресурса в некоторой степени восстанавливает средний уровень токсичности двигателя. Бесспорно, если при замене колец произвести регулировку овальности цилиндров до уровня предельной величины на изготовление новых гильз, то эффект будет намного значительнее.

Разработка новых способов смешения и растворения и математического описания воздействия соответствующих присадок и добавок в нефтяном топливе позволит значительно сократить время на разработку новых составов альтернативных топлив и предсказания их физико-химических свойств, что позволит довести рабочий процесс двигателя при использовании новых альтернативных топлив.

Анализ отечественной и зарубежной литературы показал, что развитие перехода на новые виды топлива будет проходить три основных этапа. На первом этапе будет использоваться стандартное нефтяное топливо, спирты, добавки водорода и водородсодержащих топлив, газовое топливо и различные их сочетания, что позволит решить проблему частичной экономии нефтяного топлива. Второй этап будет базироваться на производстве синтетических топлив, подобных нефтяным, производимых из угля, горючих сланцев и т.д. На этом этапе решатся проблемы долгосрочного снабжения существующего парка двигателей новыми видами топлива. На заключительном, третьем этапе будет характерен переход к новым видам энергоносителей и энергосиловых установок (работа двигателей на водороде, использование атомной энергии).

Перевод ДВС на водород и водородсодержащее топливо представляет собой сложный социально-экономический процесс, для осуществления которого потребуется крупная перестройка ряда отраслей промышленности, поэтому на первом этапе наиболее приемлемым вариантом является работа дизелей с добавками водородсодержащих топлив. Крайне ограниченные сведения в литературе об особенностях горения углеводородного топлива с добавками водорода и аммиака в дизелях не позволяют однозначно ответить на вопрос о влиянии водородсодержащих топлив на показатели рабочего процесса дизеля.

Также крайне слабо исследован вопрос о применении в дизелях синтетического жидкого топлива (СЖТ), вырабатываемого из угля. Различные литературные данные не позволяют дать однозначную оценку влияния СЖТ на рабочий процесс, в связи с тем, что его физико-химические свойства очень сильно зависят от исходного сырья и технологии переработки.

Наиболее вероятным источником моторного топлива могут служить спирты, однако следует учесть их крайне плохие моторные свойства в случае использования их в дизелях. Применяемые способы использования спиртовых топлив требуют дополнительного усложнения конструкции (установка карбюраторов, свечей зажигания или второй топливной системы), либо удорожания топлива (использование добавок, повышающих цетановое число). Наиболее оптимальным в этой ситуации может служить способ использования растворов этанола или метанола с дизельным топливом в дизелях.

Исследование влияния различных типов альтернативных топлив проводилось для нескольких типов быстроходных дизелей с различными способами смесеобразования, поэтому было необходимо получить как можно более полную информацию о протекании процессов топливоподачи, сгорания, сажеобразования, токсичности и т.д. Поэтому была разработана и внедрена автоматизированная система регистрации и обработки информации на базе ПК. Для этого комплекса был разработан пакет прикладных программ, включающий программу сбора информации с различных датчиков во время испытаний, программы обработки полученных данных по анализу индикаторной диаграммы, результатов оптического индицирования, топливоподачи и обсчета параметров режима.

Для одновременной подачи цикловой порции дизельного топлива и газа в цилиндр автором разработана специальная двухтопливная форсунка, которая дополнялась отдельной магистралью, состоящей из штуцера подвода газа и каналов в корпусе форсунки и распылителя. В канале корпуса форсунки выполнен обратный клапан, прижимаемый к седлу пружиной. В канал распылителя запрессована цилиндрическая вставка с винтовой нарезкой на поверхности, которая образует смесительно-аккумулирующую камеру, соединяющуюся с подъигольной полостью распылителя форсунки.

На базе разработанной форсунки была изготовлена топливная система дизеля, позволяющая подавать различные виды газообразных добавок к топливу.

Наиболее эффективно проводить рассмотрение особенностей рабочего процесса при использовании альтернативных топлив, обладая информацией о пространственном распределении полей концентрации сажи и температуры. На сегодняшний день существует в основном двухмерное представление температурно-концентрационной неоднородности в цилиндре дизеля. В результате была поставлена задача экспериментального исследования пространственного распределения полей температуры и концентраций сажи. В работе использовалось оригинальное экспериментальное оборудование для определения массовой концентрации сажи, основанное на оптическом индицировании цилиндров, и программно реализованные методики определения температурных полей.

Расчетные исследования растворимости газа (водорода, аммиака и др.) основывались на следующих предположениях: во-первых -процесс растворения идет в смесительно-аккумулирующей камере и распылителе форсунки; во-вторых - растворение протекает в соответствии с моделью обновления поверхности, т.е. поверхность контакта топлива с газом обновляется с частотой, равной частоте колебания давления топлива в нагнетательном трубопроводе высокого давления.

Одним из путей преодоления трудностей приготовления смесей дизельного топлива с альтернативными является применение третьего компонента - совместного растворителя дизельного топлива и спирта. Совместный растворитель должен иметь свойства дизельного топлива и спирта, т.е. его молекула должна иметь как полярные свойства, так и алифатическую составляющую для образования связей с углеводородами.

Попытки использования водорода в качестве топлива для двигателей внутреннего сгорания известны достаточно давно. Так, например, в двадцатые годы исследовали вариант использования водорода как добавки к основному топливу для двигателей внутреннего сгорания дирижаблей, что давало возможность увеличить дальность их полета.

Использование водорода в качестве топлива для ДВС представляет собой комплексную проблему, которая включает обширный круг вопросов:

Возможность перевода на водород современных двигателей;

Изучение рабочего процесса двигателей при работе на водороде;

Определение оптимальных способов регулирования рабочего процесса обеспечивающих минимальную токсичность и максимальную топливную экономичность;

Разработку системы топливоподачи обеспечивающую организацию эффективного рабочего процесса в цилиндрах ДВС;

Разработку эффективных способов хранения водорода на борту транспорта;

Обеспечение экологической эффективности применения водорода для ДВС;

Обеспечение возможности заправки и аккумулирования водорода для двигателей.

Решение этих вопросов имеет вариантный уровень, однако, общее состояние исследований по этой проблеме можно рассматривать, как реальную базу для практического применения водорода. Подтверждением этому являются практические испытания, исследования вариантных двигателей работающих на водороде. Так, например, фирма "Mazda" делает ставку на водородный роторно-поршневой двигатель.

Исследования в этой области отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования, при использовании водорода в качестве присадки, частично замещая топливо водородом, и работе двигателя только на водороде.

Обширный перечень исследований определяет необходимость их систематизации и критического анализа. Использование водорода известно в двигателях, работающих на традиционных топливах нефтяного происхождения, а также в сочетании с альтернативными топливами. Так, например, со спиртами (этиловый, метиловый) или с природным газом. Возможно использование водорода в сочетании с синтетическими топливами, мазутами и другими топливами.

Исследования этой области известны как для бензиновых двигателей, так и для дизелей, а также для других типов двигателей. Некоторые авторы работ этой тематики считают, что водород является неизбежностью и необходимо лучше подготовиться к встрече с этой неизбежностью.

Отличительной особенностью водорода является его высокие энергетические показатели, уникальные кинетические характеристики, экологическая чистота и практически неограниченная сырьевая база. По массовой энергоемкости водород превосходит традиционные углеводородные топлива в 2,5-3 раза, спирты - в 5-6 раз, аммиак - в 7 раз.

Качественное влияние на рабочий процесс ДВС водорода определяется, прежде всего, его свойствами. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса ДВС, лучшие показатели экономичности и токсичности.

Чтобы приспособить существующие конструкции поршневых ДВС, бензиновых и дизелей к работе на водороде, как основном топливе, необходимы определенные изменения, в первую очередь - конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит и снижению мощности до 40%, из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования картина меняется, энергоемкость заряда водородного дизеля может возрастать до 12%, или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени.

Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска «холодного» водорода исследованы и дают положительные результаты.

Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время, низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород.

Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023К. Возможно, воспламенение воздушной смеси от запальной порции углеводородного топлива, за счет увеличения температуры конца сжатия применением наддува или подогревом на впуске воздушного заряда.

Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а повышение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмисси окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при а>1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8… 10 раз.

CNG разрешено непосредственно в городских кварталах жилой и общественной застройки. Более того, во многих странах разрешена заправка транспортных средств природным газом в подземных гаражах. 1.6. Производство газового оборудования для автомобилей. В наши дни славу лучшего в мире производителя газовой автоаппаратуры перехватила Италия. И сейчас на мировом рынке наибольшим спросом пользуется...

Модель, получившая обозначение «H2R», развивает скорость свыше 300 км/ч. Перспективным представляется новое направление в двигателестроении на водородном топливе, основанное на применении двигателя Стирлинга. Этот двигатель до конца XX в. широко не применялся на автотранспорте из-за более сложной по сравнению с двигателем внутреннего сгорания конструкции, большей материалоемкости и стоимости. ...

Во всем мире в качестве источника энергии повсеместно продолжает использоваться ископаемое топливо, которое хоть и экологически улучшается с каждым годом, загрязнение от выхлопов которого, остается одной из главных экологических проблем. Это заставляет ученых и инженеров задуматься о возможности использования альтернативного топлива в качестве других источников энергии.

Таких разработок много, однако в серийное использование продвигаются не так много видов экологически чистого топлива.

Давление сжатого воздуха

Пневмопривод был разработан во Франции и Индии практически одновременно. Ныне такие автомобили уже производятся серийно. Для движения используется сила, создаваемая сжатым воздухом. Такое транспортное средство развивает скорость до 35 км/час (с использованием мизерного количества топлива до 90 км/ч). Расход сжатого воздуха в бензиновом эквиваленте составляет порядка одного литра на 100 километров.

Спиртовой двигатель

Этанол или этиловый спирт - один из наиболее распространенных видов альтернативного топлива. В США и Бразилии порядка 32 тысяч заправочных станций реализуют этиловое топливо. Более 230 млн. транспортных средств во всем мире используют именно его. Вещество, получаемое во время брожения различных культур, обеспечивает достаточное количество энергии, а продукты его горения не несут никакого вреда экологии.

Биодизель или энергия растительного масла

Конструкция дизельного двигателя сама по себе эффективнее бензинового. А если его заправить его растительным маслом, то еще и экологически чистая. Речь о специально переработанном масле. Получить такое топливо можно даже в домашних условиях, используя несложные технологические процессы. У такой технологии множество плюсов: нет необходимости менять конструкцию двигателей на уже собранных авто, для его производства используются восстанавливаемые ресурсы, а выхлоп совершенно безопасен для окружающей среды.

Водородный двигатель

В начале XXI века был разработан водородный двигатель. Технологически можно использовать водородное топливо и в обычном двигателе внутреннего сгорания, но тогда мощность падает на 60 - 82%. Если внести необходимые изменения в системе зажигания, то напротив, мощность только увеличится на 117%, в этом случае увеличение выхода окислы азота приводит к подгоранию поршней и клапанов, а также вступление водорода в реакцию с другими материалами приводит быстрому износу двигателя. Его усовершенствованная версия в будущем сможет, возможно, использовать в качестве топлива даже воду. Кроме того, водород обладает сильной летучестью, поэтому его трудно сохранить в жидком виде, в топливном баке BMW Hydrogen (автомобиль на изображении ) всего за неделю неиспользования испаряется полбака водородного топлива.

Электродвигатель

Есть тип двигателя, который вообще не производит выхлопа - электрический. Технология начинает свою историю еще в XIX веке. Популярность электрическому двигателю способствовали трамваи и троллейбусы в качестве городского транспорта, но в таком случае транспорту необходим был постоянный электрический ток в виде проводов. Электромобиль так и не набрал в свое время популярности, хоть и появился раньше, чем автомобиль с двигателем внутреннего сгорания. Ныне электромобили выпускаются серийно, в городах оборудуются электрические заправки для них и технология набирает популярность.

Гибридный автомобиль

Особенно, популярны гибридные автомобили с одновременным использованием электродвигателя и двигателя внутреннего сгорания, позволяющим приводить в движение автомобиль, как и от электрического заряда, так и от привычного топлива. Гибридные автомобили, конечно, не избавляют атмосферу полностью от вредных выхлопов, но уменьшают количество отработавших газов, при этом позволяют в разы экономить топливо и уменьшать эксплуатационные характеристики.

Определяющее влияние транспорта на состояние окружающей среды требует особого внимания к при­менению новых экологически чистых видов топлива. К ним относится, прежде все­го, сжиженный или сжатый газ.

В мировой практике в качестве моторного топлива наиболее широко используется сжатый природный газ, содержащий не менее 85 % метана.

В меньшей степени распространено применение по­путного нефтяного газа; представляющего собой смесь, в основном - пропана и бутана. Эта смесь может нахо­диться в жидком состоянии при обычных температу­рах под давлением до 1,6 МПа. Для замещения 1 л бензина требуется 1,3 л сжиженного нефтяного газа, а экономическая эффективность его по эквивалентным затратам на топливо в 1,7 раз ниже, чем у сжатого газа. Следует отметить, что природный газ, в отличие от не­фтяного газа, не токсичен.

Анализ показывает, что применение газа сокращает выбросы: окислов углерода - в 3-4 раза; окислов азо­та - в 1,5-2 раза; углеводородов (не считая метана) - в 3-5 раз; частиц сажи и двуокиси серы (дымность) дизельных двигателей - в 4-6 раз.

При работе на природном газе с коэффициентом из­бытка воздуха а=1,1 выбросы ПАУ, образующихся в двигателе при сгорании топлива и смазочного масла (включая бенз(а)пирен), составляют 10 % от выбросов при работе на бензине. Двигатели, работающие на природном газе, уже сейчас удовлетворяют всем современ­ным нормам по содержанию газообразных и твердых составляющих в выхлопных газах.

Токсичные компоненты выхлопных газов

Вид топлива

(без метана)

Бензапирен

Бензин (двигатели с нейтрализат.)

Дизтопливо

Газ+дизтопливо

Пропан-бутан

природ, сжатый

Особо следует остановиться на выбросах углеводоро­дов, которые претерпевают в атмосфере фотохимичес­кое окисление под действием ультрафиолетового облу­чения (ускоряющееся в присутствии NO x). Продукты этих окислительных реакций образуют так называемый смог. В бензиновых двигателях основное количество уг­леводородных выбросов приходится на этан и этилен, а в газовых - на метан. Это связано с тем, что эта часть выбросов бензиновых двигателей образуется в резуль­тате крекинга паров бензина в несгорающей части сме­си при высоких температурах, а в газовых двигателях несгорающий метан никаким преобразованиям не под­вергается.

Легче всего под воздействием ультрафиолетового облучения окисляются непредельные углеводороды, такие, как этилен. Предельные углеводороды, вклю­чая метан, более стабильны, т.к. требуют для фотохимической реакции более жесткого (коротковолнового) излучения. В спектре солнечного излучения составля­ющая, инициирующая окисление метана, имеет столь малую интенсивность по сравнению с инициаторами окисления других углеводородов, что практически окис­ление метана не происходит. Поэтому в ограничитель­ных стандартах автомобильных выбросов ряда стран углеводороды учитывают без метана, хотя пересчет ве­дется на метан.

Таким образом, несмотря на то, что сумма углево­дородов в выхлопных газах двигателей, использую­щих газомоторное топливо, оказывается такой же, как и у бензиновых двигателей, а в газодизеле часто и выше, эффект загрязнения воздушного бассейна этими ком­понентами при газовом топливе в несколько раз мень­ше, чем при жидком.

Важно также иметь в виду, что при применении газового топ­лива увеличивается моторесуры двигателя - в 1,4- 1,8 раза; срок службы свечей зажигания - в 4 раза и моторного масла - в 1,5-1,8 раза; межремонтный пробег - в 1,5-2 раза. При этом снижаются уровень шума на 3-8 дБ и время заправки. Все это обеспечива­ет быструю окупаемость затрат на перевод транспорта на газомоторное топливо.

Внимание специалистов привлекают вопросы безо­пасности использования газомоторного топлива. В це­лом взрывоопасная смесь газовых топлив с воздухом образуется при концентрациях, в 1,9-4,5 раза. Однако определенную опасность представляют утеч­ки газа через неплотность соединений. В этом отноше­нии наиболее опасен сжиженный нефтяной газ, т.к. плотность его паров больше, чем воздуха, а для сжато­го - меньше (соответственно, 3:1,5:0,5). Следователь­но, утечки сжатого газа после выхода из неплотностей поднимаются вверх и улетучиваются, а сжиженного - образуют местные скопления и, подобно жидким неф­тепродуктам, «разливаются», что при возгорании уве­личивает очаг пожара.

Кроме сжиженного или сжатого газа многие специ­алисты предрекают большое будущее жидкому водоро­ду, как практически идеальному, с экологической точ­ки зрения, моторному топливу. Еще несколько десяти­летий назад применение жидкого водорода в качестве горючего казалось достаточно отдаленным. К тому же трагическая гибель в канун второй мировой войны на­полненного водородом дирижабля «ГинденбурТ» настоль­ко подмочила общественную репутацию «топлива бу­дущего», что надолго вычеркнуло его из каких-либо серьезных проектов.

Быстрое развитие космической техники вновь зас­тавило обратиться к водороду, на этот раз уже жидко­му, как почти идеальному горючему для исследования и освоения мирового пространства. Тем не менее, по-прежнему не исчезли сложные инженерные проблемы, связанные как со свойствами самого водо­рода, так и его производством. Как горючее для транс­порта водород удобнее и безопаснее применять в жид­ком виде, где в пересчете на один килограмм он пре­восходит по калорийности керосин в 8,7 раза и жидкий метан в 1,7 раза. В то же время плотность жидкого водорода меньше, чем у керосина почти на порядок, что требует значительно больших баков. К тому же во­дород должен храниться при атмосферном давлении при очень низкой температуре - 253 градуса Цельсия. От­сюда необходимость соответствующей теплоизоляции баков, что также тянет за собой дополнительный вес и объем. Высокая температура горения водорода приво­дит к образованию значительного количества экологи­чески вредных окислов азота, если окислителем является воздух. И, наконец, пресловутая проблема безо­пасности. Она по-прежнему остается серьезной, хотя и считается теперь значительно преувеличенной. Отдельно следует сказать о производстве водорода. Почти един­ственным сырьем для получения водорода служат на сегодня те же горючие ископаемые: нефть, газ и уголь. Поэтому истинный перелом в мировой топливной базе на основе водорода может быть достигнут лишь путем принципиального изменения способа его производства, когда исходным сырьем станет вода, а первичным ис­точником энергии - Солнце или сила падающей воды. Водород принципиально превосходит все ископаемые виды горючего, включая и природный газ, в своей об­ратимости, то есть практической неисчерпаемости. В отличие от горючих, добываемых из-под земли, кото­рые после сгорания теряются безвозвратно, водород добывается из воды и сгорает опять в воду. Разумеется, чтобы получить водород из воды, нужно затратить энер­гию, причем значительно большую, чем можно исполь­зовать затем при его сгорании. Но это не имеет суще­ственного значения, если так называемые первичные источники энергии будут в свою очередь неисчерпае­мыми и экологически чистыми.

Разрабатывается и второй проект, где в качестве источника первичной энергии используется Солнце. Подсчитано, что на широтах ± 30-40 градусов наше светило греет примерно в 2-3 раза сильнее, чем в бо­лее северных широтах. Это объясняется не только бо­лее высоким положением Солнца на небе, но и несколько меньшей толщиной атмосферы в тропических регио­нах Земли. Однако почти вся эта энергия быстро рассе­ивается и пропадает. Получение с помощью ее жидкого водорода - наиболее естественный способ аккумуляции солнечной энергии с последующей доставкой ее в север­ные районы планеты. И не случайно научно-исследова­тельский центр, организованный в Штутгарте, имеет характерное название «Солнечный водород - источ­ник энергии будущего». Установки, аккумулирующие солнечный свет, предполагается, согласно указанному проекту, разместить в Сахаре. Сконцентрированное та­ким образом небесное тепло будет использовано для привода паротурбин, вырабатывающих электроэнергию. Дальнейшие звенья схемы те же, что и в канадском варианте, с той лишь разницей, что жидкий водород доставляется в Европу через Средиземное море. Прин­ципиальное сходство обоих проектов, как видим, в том, что они экологически чисты на всех стадиях, включая даже перевозку сжиженного газа по воде, поскольку танкеры работают опять-таки на водородном топливе. Уже сейчас такие всемирно известные немецкие фир­мы, как «Линде» и «Мессергрисхейм», расположенные в районе Мюнхена, производят все необходимое обору­дование для получения, сжижения и транспортировки жидкого водорода, за исключением разве что криоген­ных насосов. Громадный опыт по использованию жид­кого водорода в ракетно-космической технике накоп­лен фирмой «МББ», расположенной в Мюнхене и при­нимающей участие практически во всех престижных программах Западной Европы по освоению космоса. Научно-исследовательское оборудование фирмы в об­ласти криогеники используется также на американс­ких космических челноках. Широко известная немец­кая авиакомпания «Дейче Эрбас» разрабатывает пер­вый в мире аэробус, летающий на жидком водороде. Помимо экологических соображений применение жид­кого водорода в обычной и сверхзвуковой авиации пред­почтительно и по другим причинам. Так, примерно на 30 % при прочих равных условиях снижается взлет­ный вес самолета. Это позволяет, в свою очередь, со­кратить разбег и сделать взлетную кривую более кру­той. В результате снижается шум - этот бич современ­ных аэропортов, расположенных зачастую в густо­населенных районах. Не исключена также возможность снижения лобового сопротивления самолета путем силь­ного охлаждения его носовых частей, встречающих поток воздуха.

Все изложенное выше позволяет сделать вывод, что переход на водородное топливо, в первую очередь в авиа­ции, а затем и в наземном транспорте станет реальнос­тью уже в первые годы нового века. К этому времени будут преодолены технические проблемы, окончатель­но ликвидировано недоверие к водороду как чересчур опасному виду горючего и создана необходимая инфра­структура.

ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА

По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).

Топливо по происхождению делят на:

Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)

Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).

По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.

Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.

Жидкое топливо – продукты переработки нефти (мазут).

Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.

Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).

Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.

ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.

Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.

Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).

Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.

Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.

В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).

Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.

Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.

В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).

Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.

Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.


ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН 4 ; кроме того, в газе разных месторождений содержатся небольшие количества азота N 2 , высших углеводородов СnНm , диоксида углерода СО 2 . В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С 3 Н 8 + С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.

Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.

В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.

Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н 2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.

Тема урока: Экологическая характеристика видов топлива.

Цель: Сформировать понятие об экологической характеристике видов топлива.

Задачи: Образовательная- сформировать понятия о видах топлива, создать условия для анализирования преимуществ и недостатков различных альтернативных видов автомобильных топлив ;

Развивающая- развивать умения самостоятельно решать поставленные задачи, познавательный интерес, умение обобщать, анализировать, сравнивать, формировать ключевые компетенции ;

Воспитательная- формирование мотивов, потребностей и привычек экологически целесообразного поведения и деятельности; воспитание активности, увлеченности, целеустремленности, настойчивости, наблюдательности, волевых качеств, интуиции, сообразительности, самостоятельности.

Оборудование, наглядные пособия: презентация

Тип занятия: урок изучения нового материала

Методы занятия: словесный, наглядный, практический.

Ожидаемый результат: знание экологической характеристики видов топлива.

Ход занятия:

1.Организационно- психологический настрой

2.Актуализация знаний и умений:

Разминка:

    Взаимовыгодное сожительство организмов Симбиоз .

    Наука, изучающая взаимосвязи живых организмов между собой и окружающей средой Экология.

    Организм, часто являющийся первым звеном в цепи питания Растение.

    Воздушная оболочка Земли Атмосфера.

    Группа особей одного вида, длительно обитающая на определенной территории, относительно обособленно от представителей этого же вида Популяция.

    Сообщество живых организмов Биоценоз.

    Организм, нападающий, убивающий и поедающий свою жертву Хищник.

    Листья сосны. Хвоя

    Искусственное насаждение вдоль дорог. Лесополоса

    Сосновый лес. (Бор)

    Плод дуба. (Желудь)

    «Плач» березы весной. (Сокодвижение)

    Защитный экран Земли. (Озоновый слой)

    Токсичный туман. (Смог)

    Совокупность условий, в которых живет организм. (Среда обитания)

    Дубовый лес. (Дубрава)

    Ядовитый металл, содержащийся в выхлопных газах автомобильного транспорта. (Свинец)

Дополнительные вопросы:

    Отличие агроценоза от биоценоза

    Что такое экосистема?

    Что изучает аутэкология?

    Способна ли атмосфера к самоочищению? Каким образом?

    Законодательная база охраны ОС в РК

    Составить цепи питания:

Цапля, лягушка, комар (Комар – лягушка – цапля)

Рыба, водоросли, медведь (Водоросли – рыба – медведь)

Пшеница – мышь полевка – сова (пшеница – мышь полевка – сова)

Заяц- трава-лиса (Трава – заяц – лиса) слайд 1

7.Распределить: сова, куница , лягушка, паук, прыткая ящерица , лягушка, бабочка, зеленые плоды, цветковые, кора, бактерии, листья и семена, грибы. слайд 2

Продуценты-

Консументы-

Редуценты-

3.Формирование новых знаний и умений:

Вопросы:

    Какие компоненты содержаться в автомобильных выхлопных газах?

(Смесь примерно 200 веществ. В них содержатся углеводороды–не сгоревшие или не полностью сгоревшие компоненты топлива)

    На каком виде топлива работает подавляющее большинство современных автомобилей? ( автомобили с двигателями внутреннего сгорания, работающими на бензине или дизельном топливе, получаемых из нефти) .

3.В чем причина поиска замены традиционного топлива на альтернативные? ( резкое подорожание нефти в последнее время в сочетании с озабоченностью ростом вредных выбросов, которые производят автомобили, загрязняя атмосферу, привела к мысли правительства многих стран и автомобильные компании искать замену традиционному топливу)

4.Что такое цетановое число дизеля?

Цетановое число - характеристика воспламеняемости дизельного топлива, определяющая период задержки воспламенения смеси (промежуток времени от впрыска топлива в цилиндр до начала его горения).

5.Чем ниже содержание в топливе «вредных» ароматических углеводородов, тем цетановое число будет больше или меньше ( больше /выше ).

(цель, тема)

Человек успел за короткий срок сделать условия жизни на Земле невыносимыми. И только от него зависит, станет ли на Земле, лучше или хуже. Серьезную проблему представляет выброс в воздух загрязняющих веществ автотранспортом.

В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. При горении углеводородного топлива происходит образование токсичных веществ, связанное с условиями горения, составом и состоянием смеси.

Подавляющее большинство автомобилей до сих пор - это автомобили с двигателями внутреннего сгорания, работающими на бензине или дизельном топливе, получаемых из нефти.

Сейчас за один день нефти сжигается столько, сколько природа с помощью солнечной энергии способна выработать за тысячу лет. По прогнозам ученых запасов нефти в мире осталось немного. Сложившаяся ситуация не является тайной. Научно-исследовательские организации многих стран мира ищут адекватную замену топливу, получаемому при переработке нефти. Задача достаточно сложна, и единого решения до сих пор нет, хотя автомобили, работающие на альтернативных видах топлива, производили и успешно эксплуатировали не только в нынешнем веке, но и в XX, и даже в XIX веке. Однако резкое подорожание нефти в последнее время в сочетании с озабоченностью ростом вредных выбросов, которые производят автомобили, загрязняя атмосферу (особенно остро эта проблема стоит в крупных городах) привела к мысли правительства многих стран и автомобильные компании искать замену традиционному топливу

Задание: Расшифруйте А-95.

Задача достаточно сложна, и единого решения до сих пор нет, хотя автомобили, работающие на альтернативных видах топлива, производили и успешно эксплуатировали не только в нынешнем веке, но и в XX, и даже в XIX веке. Первая в мире газовая самобеглая повозка «Гиппомобиль» была создана Жаном-Этьеном Ленуаром еще в 1862. В нашей стране в 1930-х годах выпускали газогенераторные автомобили, которые «топили»... березовыми чурками, торфом или углем. Дрова термически разлагались при относительно низкой температуре, превращаясь в газ, который сгорал в цилиндрах двигателя. Широко известная немецкая авиакомпания «Дейче Эрбас» разрабатывает первый в мире аэробус, летающий на жидком водороде.

Задание: Заполнить таблицу « Сравнительные показатели различных видов топлив »

вид

Достоинства

Недостатки

газообразное

Более полное сгорание благодаря более качественному образованию смеси в цилиндрах,

Низкая токсичность продуктов сгорания,

Низкая стоимость и транспортировки газа

Низкий уровень шумового загрязнения атмосферы,

Невозможность хищения топлива обслуживающим персоналом,

Низкая стоимость переоборудования автомобиля.

    высокая токсичность самого топлива

    высокая взрывоопасность баллонов с газом при ДТП,

Электроэнергия

Экологическая безопасность (отсутствие выхлопных газов)

Простота конструкции

низкая стоимость заправки

низкий уровень шумового загрязнения

лёгкость в управлении, надёжность

эксплуатация электромобиля обходится дешевле, чем традиционной

малый запас хода

длительное время зарядки,

проблема утилизации аккумуляторов

отсутствие заряжающих станций

большинство электростанций – тепловые, сжигающие топливо для получение электроэнергии, вредные компоненты.

Биотопливо

имеет неограниченные запасы сырья (возобновляемость ресурса)

меньшее количество вредных веществ в отработавших газах

высокие смазочные характеристики, что продлевает срок жизни двигателя

высокое цетановое число

Высокая температура воспламенения

Низкая стоимость

большая вязкость биодизеля, что вызывает необходимость подогревать топливо при низких температурах для обеспечения приемлемой текучести,

Малый срок хранения – около 3х месяцев.

Спирт

нейтрален как источник парниковых газов

низкая стоимость

повышает риск увеличения эмиссии летучих органических веществ, это приводит к уменьшению концентрации озона и усилению солнечной радиации,

низкая, по сравнению с базовыми моделями мощность

Водород

сгорает полнее

высокая удельная теплота сгорания,

отсутствие токсичных выхлопов

можно получать буквально из всего: из природного газа, океанской воды, биомассы, воздуха

обладает намного более широким, по сравнению с бензином, диапазоном пропорций смешивания его с воздухом, при которых ещё возможен поджиг смеси

несовершенные технологии хранения водорода

высокая себестоимость водорода,

сложный процесс получения водорода в промышленных масштабах, в процессе которого выделяется все тот же СО,

высокая стоимость водородной силовой установки и сложность ее обслуживания,

взрывоопасность водородно-воздушной смеси – отсутствие развитой структуры водородных заправочных станций.

Просмотр видео

Основная причина загрязнения воздуха заключается в неполном и неравномерном сгорании топлива. Всего 15% его расходуется на движение автомобиля, а 85% "летит на ветер". К тому же камера сгорания автомобильного двигателя-это своеобразный химический реактор, синтезирующий ядовитые вещества и выбрасывающий их в атмосферу. Даже не винный азот из атмосферы, попадая в камеру сгорания, превращается в ядовитые оксиды азота.
Основными токсичными веществами, загрязняющими атмосферу, в отработанных газах двигателей с воспламенением от искры являются: оксид углерода, оксиды азота и углеводороды. Особое место занимают канцерогенные вещества, основным представителем которых в отработанных газах является бенз(а)пирен.

Вследствие глобального загрязнения окружающей среды свинцом, он стал вездесущим компонентом любой растительной и животной пищи и кормов. Растительные продукты в целом содержат больше свинца, чем животные.

Причина летнего листопада - высокое содержание свинца в воздухе. Но, концентрируя свинец, деревья тем самым очищают воздух. В течение вегетативного периода одно дерево обезвреживает соединения свинца, содержащиеся в 130 л бензина. Наименее восприимчивым к свинцу является клен, а наиболее восприимчивы орешник и ель.

Сторона деревьев, обращенная к автомобильным магистралям, на 30 – 60% «металличнее». Хвоя ели и сосны обладает свойствами хорошего фильтра по отношению к свинцу. Она его накапливает и не обменивает с окружающей средой. Растительность суши вовлекает в биологический круговорот ежедневно 70 – 80 тыс. т. свинца

Чтобы автомобиль с полным основанием можно было назвать экологически чистым, должно быть экологически чистым топливо. И газ отвечает этому требованию. Применение газа заметно снижает по сравнению с бензином суммарную токсичность отработавших газов. Более чем втрое уменьшается количество токсичной окиси углерода СО (угарный газ), в 1,6 раза - содержание канцерогенных углеводородов СН, состоящих из частиц несгоревшего топлива. Концентрация окиси азота NO и двуокиси NO2 образующихся в процессе горения смеси кислорода и азота (безвредный азот, попадая в камеру сгорания из атмосферы, превращается в ядовитое соединение - оксиды азота), при работе двигателя на газе снижается в 1,2 раза. Соединения же свинца и различные ароматические полимеры,содержащиеся в бензине и также являющиеся опасными канцерогенами, в газовом топливе совершенно отсутствуют.Дымность выхлопа при работе на газовом топливе втрое ниже, чем при работе на бензине.

Исследования опровергли устоявшееся мнение, что использование газа вместо бензина - вынужденная мера. Газовое топливо сгорает полнее, поэтому концентрация окиси углерода в выхлопе газового двигателя в несколько раз меньше. Автомобиль на бензине выбрасывает в атмосферу сернистый газ, который образуется от сгорания сернистых компонентов топлива, и тетраэтилсвинец. В природном газе серы, как правило, нет, а поэтому в выхлопах газового двигателя нет ни сернистого газа, ни соединений свинца. В отработанных газах бензинового двигателя из-за неполного сгорания топлива содержится и окись углерода (СО) - токсичное для человека вещество. И газовые, и бензиновые автомобили выбрасывают в атмосферу одинаковое количество углеводородов.Для здоровья человека опасны не сами углеводороды, а продукты их окисления.
Двигатель, работающий на бензине, выбрасывает сравнительно легко окисляющиеся вещества - этил и этилен, а газовый двигатель - метан, который из всех предельных углеводородов наиболее устойчив к окислению. Поэтому углеводородный выброс газового автомобиля менее опасен. Газ как моторное топливо не только не уступает бензину, но и превосходит его по своим свойствам, которые на химическом уровне разрушают детали камеры сгорания, каталитический нейтрализатор и лямбда зонд.

Вопрос: Какими же свойствами должно обладать идеальное топливо?

4.Закрепление изученного материала

Вопросы

    Вид топлива используется в автомобилях. Дешевое, экологически чистое, по многим свойствам превосходите бензин, его использование не требует изменения конструкции автомобиля.

    Вещество, из которого с помощью определённой реакции может быть получена тепловая энергия.

    Итальянский физик, химик и физиолог; открыл метан при исследовании болотного газа. Его именем названа единица измерения электрического напряжения.

    Сжатый природный газ (без цвета и запаха) является основным компонентом природного газа. Взрывоопасный, часто называют «болотным». Имеет высокую детонационную стойкость - его октановое число более 100 ед. При сгорании он практически не оставляет вредных продуктов.

    Природная маслянистая горючая жидкость, состоящая из сложной смеси углеводородов и некоторых др. органических соединений. Используется для получения из неё технически ценных продуктов, главным образом моторных топлив, растворителей, сырья для химической промышленности, её подвергают переработке.

    Экологически чистое топливо, продуктом его сгорания является вода. Выделяет больше тепла, чем любой вид традиционного ископаемого топлива.

    Спирт, может быть получен путем ферментации биомассы, содержащей крахмал, сахар либо целлюлозу. Используется как топливо, ДВС в чистом виде, в качестве растворителя и как наполнитель в спиртовых термометрах.

    Масличная культура используется в качестве корма скоту, хорошее зеленое удобрение, великолепный медонос; масло этой культуры используется в кулинарии, в металлургии для закалки стали, как сырье для производства эластичных материалов и в производстве биотоплива.

    Альтернативный источник энергии для автомобилей. Автомобили, работающие на этом источнике появились существенно раньше работающих на бензине, были широко распространены в конце 19 - начале 20 в. Они не шумящие и не дымящие, в отличие от бензиновых или паровых машин, пользовались популярностью у аристократии.

    Органическое соединение, являющееся производным углеводородов и содержащее в молекуле одну или несколько OH (гидроксильных) групп. Образуется при брожении сахаристых веществ, при окислении предельных углеводородов. В последнее время его роль растет, как топлива в двигателях внутреннего сгорания.

    Вид топлива подходит под критерий доступность и низкая токсичность. На автотранспорте в настоящее время не используется.

    Важнейшее свойство дизельного топлива, оценивается цетановым числом. По её показателю можно судить о количественном составе вредных компонентов СО и СН в выработанных газах дизеля.

    Высококачественное полноценное топливо для автомобильных двигателей. Охлажденный до -160 °С природный газ. Его основные компоненты - пропан и бутан.

    Горючая смесь лёгких углеводородов, предназначена для применения в качестве топлива для карбюраторных и инжекторных двигателей, а также при производстве парафина, чистке тканей. Получают путем разгонки и отбора фракций нефти.

Ответы

1

а

2

л

3

ь

4

т

5

е

6

р

7

н

8

а

9

т

10

и

11

в

12

н

13

ы

14

е

5.Домашнее задание дополнительный материал, привести примеры различных автомобилей, работающих на экологических видах топлива.

6.Итог урока (рефлексия, выставление оценок)