Паровая машина сообщение. Интересные паровые машины всех времен

История паровых двигателей своими истоками уходит в 1 век н.э., когда Герон Александрийский впервые описал эолипил. Более, чем 1500 лет спустя, в 1551 году османский ученый Такиюддин аш-шами описал примитивные турбины, приводимые в движение паром, а в 1629 году подобное открытие сделал Джованни Бранка. Эти устройства представляли собой паровые вертела для жарки или небольшие передаточные механизмы. В основном, такие конструкции использовали изобретатели для демонстрации мощи пара, и доказательства того, что ее не стоит недооценивать.

В 1700-х годах рудокопы столкнулись с серьезным испытанием — необходимостью выкачки воды из глубоких шахт. На помощь пришла та самая мощь пара. С помощью энергии пара удалось выкачать воду из шахт. Это применение раскрыло потенциальную силу пара и привело к изобретению парового двигателя. Паровые электростанции появились позже. Главный принцип, на котором работают паровые двигатели, заключается в “конденсации водяного пара для создания частичного вакуума”.

Томас Севери и первые промышленные двигатели

Томас Севери первым изобрел паровой насос в 1698 году, он предназначался для выкачки воды. Это изобретение часто называют «огненным двигателем» или двигателем для “подъема воды огнем”. Паровой насос, запатентованный Севери, работал путем кипячения воды до ее полного преобразования в пар. Затем каждая капелька пара подымалась в бак, а в емкости, где изначально была вода, образовывался вакуум. Этот вакуум использовался для выкачки воды с глубинных шахт. Но решение оказалось временным, так как энергии пара хватало только для выкачки воды с глубины в несколько метров. Еще одним недостатком этой конструкции было использование давления пара для выведения воды, всасываемой в бак. Давление было слишком высоким для котлов, что вызвало ряд сильных взрывов.

Машины низкого давления

Высокое потребление угля, свойственное паровым машинам Ньюкомена, сократилось благодаря инновациям Джеймса Ватта. Цилиндр машины низкого давления был оснащен термозащитой, отдельным конденсатором и водоотливным механизмом для конденсированной воды. Таким образом, потребление угля в машинах низкого давления было снижено более, чем на 50%.

Иван Ползунов и первая двухцилиндровая паровая машина

Первым в России паровую машину изобрел Иван Ползунов. Его двухцилиндровая паровая машина была более мощной, чем английские двигатели без наддува. Они достигали мощности 24 кВт. Модель двухцилиндровой паровой машины Ползунова выставлена в музее Барнаула.

Паровая машина Томаса Ньюкомена

В 1712 году Томас Ньюкомен изобрел очень удачную с практической точки зрения паровую машину. Его модель состояла из пистона или цилиндра, который приводил в движение огромную деревянную колоду для запуска водяного насоса. Обратный ход в машине действовал за счет гравитации, которая толкала вниз конец колоды со стороны насоса. Машина Ньюкомена активно использовалась на протяжении 50 лет. Затем ее признали неэффективной, поскольку для активного функционирования требовалось очень много энергии. Нужно было подогревать цилиндр, так как он постоянно остывал, в результате чего сжигалось очень много топлива.

Усовершенствования Джеймса Ватта

Джеймс Ватт совершил настоящую революцию в истории развития паровых машин, внедрив в исходную конструкцию отдельный конденсатор. Он ввел это новшество в 1765 году. Но только спустя 11 лет удалось достичь конструкции, которую можно было бы применять в промышленных масштабах. Самая большая проблема в реализации задумки Ватта состояла в технологии создания огромного пистона для сохранения нужного количества вакуума. Но вскоре технология достигла большого прогресса, и как только патент получил достаточное финансирование, паровая машина Ватта начала активно использоваться на железных дорогах и кораблях. В США более 60 000 автомобилей работали на паровых двигателях с 1897 по 1927 годы.

Машины высокого давления

В 1800 году Ричард Тревитик изобрел паровые машины высокого давления. По сравнению со всеми ранее изобретенными конструкциями паровых машин этот вариант был наиболее мощным. Но по-настоящему успешной стала конструкция, предложенная Оливером Эвансом. В ее основе лежала идея приведения двигателя в движения паром, а не конденсирование пара для создания вакуума. Эванс изобрел первую паровую машину без конденсации, работающую под высоким давлением, в 1805 году. Машина была стационарной и развивала 30 оборотов в минуту. Эта машина первоначально использовалась для приведения в движение пилы. Такие машины поддерживались огромными резервуарами с водой, которая грелась источником тепла, помещенного непосредственно под резервуаром, что позволяло эффективно вырабатывать нужное количество пара.

Вскоре эти паровые машины получили широкое применение в моторных лодках и на железных дорогах, в 1802 и 1829 годах соответственно. Почти полвека спустя появились первые паровые автомобили. Чарлз Алджернон Парсонс в 1880 году изобрел первую паровую турбину. К началу 20 века, паровые двигатели широко использовались в автомобиле- и кораблестроении.

Корнуэльские паровые двигатели

Ричард Треветик попытался усовершенствовать паровой насос, изобретенный Ваттом. Он был видоизменен для использования в корнуэльских котлах, изобретенных Треветиком. Эффективность корнуэльской паровой машины была значительно улучшена Уильямом Симсом, Артуром Вульфом и Сэмюэлем Грузом. Обновленные корнуэльские паровые машины состояли из изолированных труб, двигателя и котлов для повышенной эффективности.

15 ряд ли кто-то сомневается, что одной из главных движущих сил прогресса являются человеческая лень и стремление к комфорту. Это подтверждается бесчисленными сказками, где транспорт передвигается «по щучьему велению», а у счастливчиков имеются волшебные помощники, избавляющие хозяина от необходимости сделать хоть какое-то физическое усилие. Но поскольку в реальности «само» ничего не делается, на протяжении всей истории человечества лучшие умы корпели над изобретениями, которые помогли бы воплотить эти мечты в жизнь.

Если говорить на языке физики и техники, нужно было изобрести устройство, которое смогло бы преобразовать тот или иной вид энергии в полезную механическую работу. С древнейших времен главным и основным источником энергии была мускульная сила человека и животных, а все имеющиеся технические приспособления в лучшем случае помогали использовать ее более рационально и продуктивно. Позднее люди научились применять силу ветра и воды, текущей или падающей с высоты, заставив их работать в ветряных и водяных двигателях . Однако мощность таких двигателей была невелика, и надо было осваивать более перспективные виды энергии тепловую, химическую и электрическую.

Первое известное тепловое устройство, работавшее за счет силы пара, было построено греческим ученым Архимедом в III в. до н. э. Это была пушка, один конец которой нагревали, а затем заливали туда воду. Мгновенно нагреваясь, вода превращалась в пар, который, расширяясь, выталкивал из жерла ядро. Спустя два столетия другой греческий ученый Герон Александрийский создал и описал еще одну тепловую машину полый железный шар, способный вращаться вокруг горизонтальной оси. Из закрытого котла с кипящей водой пар по трубке поступал в шар, откуда выходил наружу через изогнутые сопла, при этом шар приходил во вращение.

Пароход «Мэйфлауэр» на реке Миссисипи. 1855 г.

Полтора тысячелетия «геронов шар» был всего лишь забавной игрушкой, и только в XVI в. ученые задумались о возможности практического применения тепловой энергии. Знаменитый изобретатель Леонардо да Винчи был первым, кто предположил, что пар может выполнять полезную работу. Об этом свидетельствуют рисунки в его рукописях, изображающие цилиндр и поршень. Да Винчи утверждал, что если под поршень в цилиндр поместить воду, а сам цилиндр нагреть, то образующийся водяной пар будет расширяться, что заставит его искать выход и перемещать поршень вверх. Параллельно арабский инженер Таги аль Дин разработал проект устройства, в котором пар, направляемый на закрепленные по ободу колеса лопасти, вращал вертел. В XVII в. похожую машину построил итальянский изобретатель Джованни Бранка. Приводимое в движение паром анкерное устройство поочередно поднимало и опускало пару пестов в ступах, в результате чего можно было дробить зерно. Однако в этих прообразах паровых турбин поток пара был слишком рассеянным, в результате чего происходила значительная потеря энергии.

До конца XVII в. создаваемые паровые машины были скорее единичными техническими диковинками, поскольку экономических предпосылок для их массового использования еще не было. В 1б70-х годах французский изобретатель Дени Папен и голландский физик Христиан Гюйгенс работали над машиной, в которой поршень поднимался за счет расширения газов при взрыве пороха. В 1680 г. Папен создал вариант двигателя, в котором вместо пороха использовалась вода. Ее наливали в цилиндр под поршень, а сам цилиндр разогревали снизу, при этом образующийся пар поднимал поршень. Затем цилиндр охлаждали, и находящийся в нем пар конденсировался, снова превращаясь в воду.

Паровой двигатель Д. Папена.

Поршень, как и в случае порохового двигателя, под действием своего веса и атмосферного давления опускался. Папен также считается изобретателем парового котла, поскольку именно он понял, что для автоматизации цикла пар должен подаваться в цилиндр извне (поэтому паровой двигатель считается двигателем внешнего сгорания: топливо, разогревающее воду сжигается вне рабочего цилиндра).

Первым паровым двигателем, который был не без успеха использован на производстве, стала сконструированная в 1698 г. английским военным инженером Томасом Севери «пожарная установка». Это устройство, самим изобретателем названное «друг рудокопа», представляло собой паровой насос, который использовался для вращения колес водяной мельницы и для откачки воды из шахт. Машина была не слишком эффективной из-за больших потерь тепла во время охлаждения контейнера и достаточно опасной в эксплуатации, поскольку из-за высокого давления пара трубопроводы и емкости двигателя нередко взрывались.

В 1712 г. английский кузнец Томас Ньюкомен продемонстрировал свой «атмосферный двигатель». Это был усовершенствованный паровой двигатель Севери, в котором рабочее давление пара удалось значительно снизить, следовательно, двигатель стал более безопасным. Пар из котла поступал в основание цилиндра и поднимал поршень.

Сколько лошадей?

Понятие лошадиной силы как единицы мощности паровой машины ввел Дж. Уатт. Но первым термин стал применять Т. Севери еще в 1698 г. При этом подход у них был разный. Севери оценивал мощность своего насоса, исходя из того, что для его работы в сутки потребуется 10 меняющихся по мере усталости лошадей. Уатт же учитывал только работающих на данный момент пару запряженных лошадей. В итоге получалось, что мощность почти одинаковых паровых машин Севери оценивал в 10 «лошадок», а Уатт только в две.

Откачка воды из угольной шахты при помощи паровой машины Т. Ньюкомена. Иллюстрация из The Universal Magazine. 1747 г.

К. Ф. фон Бреда. Потрет Джеймса Уатта. 1792 г.

При впрыскивании в цилиндр холодной воды пар конденсировался, образовывался вакуум, и под воздействием атмосферного давления поршень опускался. Этот обратный ход удалял воду из цилиндра и посредством цепи, соединенной с коромыслом, поднимал шток насоса. Именно машина Ньюкомена явилась первым паровым двигателем, с которым принято связывать начало промышленной революции в Англии. Она оказалась настолько удачной, что использовалась в Европе более 50 лет. Тем не менее в конструкцию вносились некоторые важные изменения. В частности, в 1718 г. англичанин Генри Бейтон изобрел распределительный механизм, который автоматически включал или отключал пар и впускал воду. Он же дополнил паровой котел предохранительным клапаном.

Проект первой в мире паровой машины, способной непосредственно приводить в действие любые рабочие механизмы, предложил в 1763 г. русский изобретатель Иван Иванович Ползунов, механик на Колывано-Воскресенских горнорудных заводах Алтая. Его машина представляла собой двухцилиндровый вакуумный агрегат с поршнями, соединенными цепью, перекинутой через шкив. Все действия в нем совершались автоматически. Вместо опытного образца заводское начальство потребовало сразу построить большую машину для мощной воздуходувки. Двигатель строили почти два года, и до запуска изобретатель не дожил. Машина успешно прошла испытания и была запущена в эксплуатацию. Уже через три месяца она не только оправдала затраты, но и дала прибыль. Однако через некоторое время котел дал течь, и по непонятным соображениям чинить машину не стали.

Примерно в это же время в Англии над созданием паровой машины работал шотландец Джеймс Уатт. Он занимался усовершенствованием двигателя Ньюкомена. Было ясно, что основной недостаток машины Ньюкомена состоял в попеременном нагревании и охлаждении цилиндра. Уатт предположил, что цилиндр может постоянно оставаться горячим, если до конденсации отводить пар в отдельный резервуар через трубопровод с клапаном. Более того, цилиндр может оставаться горячим, а конденсатор холодным, если снаружи их покрыть теплоизоляционным материалом. В 1768 г. он получил на свое изобретение патент, но построить машину смог только в 1776 г. Она оказалась вдвое эффективнее машины Ньюкомена.

Паровая машина Ползунова.

И. И. Ползунов.

В 1782 г. появилась созданная Уаттом первая универсальная паровая машина двойного действия. Ее крышка была оснащена сальником, который обеспечивал поршню свободное движение штока и в то же время предотвращал утечку пара из цилиндра. Пар поступал в цилиндр с двух сторон поршня попеременно, таким образом, поршень совершал с помощью пара и рабочий, и обратный ход, чего не было в прежних машинах. Уатт получил на свою «ротативную паровую машину» патент, и она начала широко применяться для приведения в действие станков и машин сначала на прядильных и ткацких фабриках, а затем и на других промышленных предприятиях.

Паровоз «Пыхтящий Билли».

Макет паровой машины Дж. Уатта.

Помимо промышленности паровые машины прочно заняли место в сельском хозяйстве и на транспорте. Еще в 1850 г. английский изобретатель Уильям Говард использовал для пахоты локомобиль компактный передвижной паровой двигатель. В 1879 г. крестьянин Федор Блинов из Саратовской губернии построил и запатентовал первый в мире гусеничный трактор, приводимый в действие паровой машиной мощностью 20 л. с.

Первый образец автомобиля с паровым двигателем в 1769 г. испытал французский изобретатель Николя Жозе Кюньо, его творение получило известность как «малая паровая телега Кюньо». Год спустя публике представили уже «большую паровую телегу Кюньо». В 1788 г. в США было организовано пароходное сообщение по реке Делавер между городами Филадельфия и Берлингтон. Сконструированный Джоном Фитчем пароход мог принять на борт 30 пассажиров и везти их со скоростью 7-8 миль в час. А в 1804 г. Ричард Тревитик продемонстрировал первый самоходный железнодорожный локомотив на паровой тяге, построенный на металлургическом заводе Пенидаррен в Мер-тир-Тидвиле (Южный Уэльс).

Несмотря на все усилия инженеров, довольно низкий КПД паровых двигателей повысить так и не удалось, и уже к концу XIX в. с полной отдачей послужившие техническому прогрессу машины начали постепенно сдавать свои позиции. На автомобильном транспорте они уступили место двигателям внутреннего сгорания, на железной дороге и в промышленности электродвигателям. Однако в теплоэнергетике и на отдельных видах транспорта паровые машины (в особенности паровые турбины) по-прежнему используются достаточно широко.

Паровая турбина сталелитейного завода.

Изобретатели паровой машины старались использовать ту же конструкцию но только в обратном направлении. Первые паровые машины впрочем были не столько двигателями сколько паровыми насосами используемыми для откачки воды из глубоких шахт. Впервые модель такой машины была предложена в 1690 году Папеном. Папен ставил цилиндр машины вертикально потому что цилиндр-клапан не может в ином положении выполнять свою функцию.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Введение

Вплоть до второй половины XVIII века люди использовали для нужд производства в основном водяные двигатели. Так как передавать механическое движение от водяного колеса на большие расстояния невозможно, все фабрики приходилось строить на берегах рек, что не всегда было удобно. Кроме того, для эффективной работы такого двигателя часто требовались дорогостоящие подготовительные работы (устройство прудов, строительство плотин и тому подобное). Были у водяных колес и другие недостатки: они имели малую мощность, работа их зависела от времени года и с трудом поддавалась регулировке. Постепенно стала остро ощущаться нужда в принципиально новом двигателе: мощном, дешевом, автономном и легкоуправляемом. Именно таким двигателем на целое столетие стала для человека паровая машина.

Парова́я маши́на — тепловой двигатель внешнего сгорания , преобразующий энергию нагретого пара в механическую работу возвратно - поступательного движенияпоршня , а затем во вращательное движение вала . В более широком смысле паровая машина — любой двигатель внешнего сгорания , который преобразовывает энергию пара в

механическую работу .

Основная часть. Появление универсального парового двигателя

  1. История создания паровых машин

Идея парового двигателя была отчасти подсказана его изобретателям конструкцией поршневого водяного насоса, который был известен еще во времена античности.

Принцип его работы был очень прост: при подъеме поршня вверх вода засасывалась в цилиндр через клапан в его дне. Боковой клапан, соединявший цилиндр с водоподъемной трубой, в это время был закрыт, так как вода из этой трубы так же стремилась войти внутрь цилиндра и тем самым закрывала этот клапан. При опускании поршня он начинал давить на воду в цилиндре, благодаря чему закрывался нижний клапан и открывался боковой. В это время вода из цилиндра подавалась вверх по водоподъемной трубе. В поршневом насосе работа, получаемая извне, расходовалась на продвижение жидкости через цилиндр насоса. Изобретатели паровой машины старались использовать ту же конструкцию, но только в обратном направлении. Цилиндр с поршнем лежит в основе всех паровых поршневых двигателей. Первые паровые машины, впрочем, были не столько двигателями, сколько паровыми насосами, используемыми для откачки воды из глубоких шахт. Принцип их действия основывался на том, что после своего охлаждения и конденсации в воду пар занимал пространство в 170 раз меньше, чем в разогретом состоянии. Если вытеснить из сосуда воздух разогретым паром, закрыть его, а потом охладить пар, давление внутри сосуда будет значительно меньше, чем снаружи. Внешнее атмосферное давление будет сжимать такой сосуд, и если в него поместить поршень, он будет двигаться внутрь с тем большей силой, чем больше его площадь.

Впервые модель такой машины была предложена в 1690 году Папеном. Дени Папен был ассистентом у Гюйгенса, а с 1688 г. профессором математики в Марбургском университете. У него возникла идея использовать для атмосферного двигателя форму полого цилиндра с движущимся в нем поршнем. Перед Папеном стояла задача заставить поршень совершать работу силой атмосферного давления. В 1690 г. был создан принципиально новый проект парового двигателя. Вода в цилиндре при нагревании превращалась в пар и двигала поршень вверх. Через специальный клапан пар выталкивал воздух, а при конденсации пара создавалось разреженное пространство; наружное давление двигало поршень вниз. Опускаясь, поршень тянул за собой веревку с грузом. Папен ставил цилиндр машины вертикально потому, что цилиндр-клапан не может в ином положении выполнять свою функцию. Двигатель Папена полезную работу выполнял плохо, так как не мог осуществить непрерывное действие. Чтобы заставить поршень поднимать груз, необходимо было манипулировать стержнем-клапаном и стопором, перемещать источник пламени и охлаждать цилиндр водой.

Совершенствование пароатмосферных машин продолжил Томас Севери. В 1698 году Томас Севери изобрел паровой насос для откачки воды из шахт. Его «друг рудокопов» работал без поршня. Всасывание воды происходило путем конденсации пара и создания разреженного пространства над уровнем воды в сосуде. Севери отделил котел от сосуда, где производилась конденсация. Эта паровая машина обладала низкой экономичностью, но все-таки нашла широкое применение.

Но наиболее широко применялась в первой половине XVIII века паровая машина Ньюкомена, созданная в 1711 году. Паровой цилиндр помещался у Ньюкомена над паровым котлом. Поршневой шток (стержень, соединенный с поршнем) был соединен гибкой связью с концом балансира. С другим концом балансира был соединен шток насоса. Поршень поднимался в верхнее положение под действием противовеса, прикрепленного к противоположному концу балансира. Кроме того, движению поршня вверх помогал пар, запускаемый в это время в цилиндр. Когда поршень находился в крайнем верхнем положении, закрывали кран, впускавший пар из котла в цилиндр, и вбрызгивали в цилиндр воду. Под действием этой воды пар в цилиндре быстро охлаждался, конденсировался, и давление в цилиндре падало. Вследствие создавшейся разницы давлений внутри цилиндра и вне его, силой атмосферного давления поршень двигался вниз, совершая при этом полезную работу -приводил в движение балансир, который двигал шток насоса. Таким образом, полезная работа выполнялась только при движении поршня вниз. Затем снова запускали пар в цилиндр. Поршень опять поднимался вверх, и весь цилиндр наполнялся паром. Когда снова вбрызгивали воду, пар снова конденсировался, после чего поршень совершал новое полезное движение вниз, и так далее. Фактически в машине Ньюкомена работу совершало атмосферное давление, а пар служил только для создания разряженного пространства.

В свете дальнейшего развития парового двигателя становится ясным основной недостаток машины Ньюкомена рабочий цилиндр в ней являлся в то же время и конденсатором. Из-за этого приходилось поочередно то охлаждать, то нагревать цилиндр и расход топлива оказывался очень велик. Бывали случаи, когда при машине находилось 50 лошадей, едва успевавших подвозить необходимое топливо. Коэффициент полезного действия (КПД) этой машины едва ли превышал 1%. Другими словами, 99% всей теплотворной энергии терялось бесплодно. Тем не менее эта машина получила в Англии распространение, особенно на шахтах, где уголь был дешевый. Последующие изобретатели внесли несколько усовершенствований в насос Ньюкомена. В частности, в 1718 году Бейтон придумал самодействующий распределительный механизм, который автоматически включал или отключал пар и впускал воду. Он же дополнил паровой котел предохранительным клапаном.

Но принципиальная схема машины Ньюкомена оставалась неизменна на протяжении 50 лет, пока ее усовершенствованием не занялся механик университета в Глазго Джемс Уатт. В 1763-1764 годах ему пришлось чинить принадлежавший университету образец машины Ньюкомена. Уатт изготовил небольшую ее модель и принялся изучать ее действие. При этом он мог использовать некоторые приборы, принадлежавшие университету, и пользовался советами профессоров. Все это позволило ему взглянуть на проблему шире, чем смотрели на нее многие механики до него, и он смог создать гораздо более совершенную паровую машину.

Работая с моделью, Уатт обнаружил, что при запускании пара в охлажденный цилиндр он в значительном количестве конденсировался на его стенках. Уатту сразу стало ясно, что для более экономичной работы двигателя целесообразнее держать цилиндр постоянно нагретым. Но как в этом случае конденсировать пар? Несколько недель он раздумывал, как разрешить эту задачу, и наконец сообразил, что охлаждение пара должно происходить в отдельном цилиндре, соединенном с главным короткой трубкой. Сам Уатт вспоминал, что однажды во время вечерней прогулки он проходил мимо прачечной и тут при виде облаков пара, вырывавшихся из окошка, он догадался, что пар, будучи телом упругим, должен устремляться в разряженное пространство. Как раз тогда ему пришла мысль, что машину Ньюкомена надо дополнить отдельным сосудом для конденсации пара. Простой насос, приводимый в движение самой машиной, мог удалять из конденсатора воздух и воду, так что при каждом ходе машины там бы могло создаваться разряженное пространство.

Вслед за тем Уатт внес еще несколько усовершенствований, в результате чего машина приняла следующий вид. К обеим сторонам цилиндра были подведены трубки: через нижнюю пар поступал внутрь из парового котла, через верхнюю отводился в конденсатор. Конденсатор представлял собой две жестяные трубки, стоявшие вертикально и сообщавшиеся между собой вверху короткой горизонтальной трубкой с отверстием, перекрывавшимся краном. Дно этих трубок было соединено с третьей вертикальной трубкой, которая служила воздушным отводным насосом. Трубки, составлявшие холодильник и воздушный насос, были помещены в небольшой цилиндр с холодной водой. Паровая трубка была соединена с котлом, из которого пар выпускался в цилиндр. Когда пар заполнял цилиндр, паровой кран закрывали и поднимали поршень воздушного насоса конденсатора, вследствие чего в трубках конденсатора получалось сильно разряженное пространство. Пар устремлялся в трубки и конденсировался там, а поршень поднимался вверх, увлекая за собой груз (так измеряли полезную работу поршня). Затем выпускной кран закрывали.

Несколько последующих лет Уатт упорно трудился над совершенствованием своего двигателя. В машину 1776 года по сравнению с конструкцией 1765 года было внесено несколько принципиальных улучшений. Поршень помещался внутри цилиндра, окруженный паровым кожухом (рубашкой). Благодаря этому была до минимума сокращена потеря тепла. Кожух сверху был закрыт, тогда как цилиндр — открыт. Пар поступал в цилиндр из котла по боковой трубе. Цилиндр соединялся с конденсатором трубой, снабженной паровыпускным клапаном. Несколько выше этого клапана и ближе к цилиндру был размещен второй, уравновешивающий клапан. Когда оба клапана были открыты, пар, выпущенный из котла, наполнял все пространство над поршнем и под ним, вытесняя воздух по трубе в конденсатор. Когда клапаны закрывали, вся система продолжала оставаться в равновесии. Затем открывали нижний выпускной клапан, отделяющий пространство под поршнем от конденсатора. Пар из этого пространства направлялся в конденсатор, охлаждался здесь и конденсировался. При этом под поршнем создавалось разряженное пространство, и давление падало. Сверху же продолжал оказывать давление пар, поступавший из котла. Под его действием поршень спускался вниз и совершал полезную работу, которая при помощи балансира передавалась штоку насоса. После того как поршень опускался до своего крайнего нижнего положения, открывался верхний, уравновешивающий, клапан. Пар снова заполнял пространство над поршнем и под ним. Давление в цилиндре уравновешивалось. Под действием противовеса, расположенного на конце балансира, поршень свободно поднимался вверх (не выполняя при этом полезной работы). Затем весь процесс продолжался в той же последовательности.

Хотя эта машина Уатта, так же как и двигатель Ньюкомена, оставалась односторонней, она имела уже важное отличие — если у Ньюкомена работу совершало атмосферное давление, то у Уатта ее совершал пар. Увеличивая давление пара, можно было увеличить мощность двигателя и таким образом влиять на его работу. Впрочем, это не устраняло основного недостатка такого типа машин - они совершали только одно рабочее движение, работали рывками и потому могли использоваться только как насосы. В 1775-1785 годах было построено 66 таких паровых двигателей.

Ползунов начал свою работу почти одновременно с Уаттом, но с иным подходом к проблеме двигателя и в совершенно других экономических условиях. Ползунов начинал с общеэнергетической постановки задачи о полной замене зависящих от локальных условий гидросиловых установок универсальным тепловым двигателем, но не смог реализовать свои смелые планы в крепостной России.

В 1763 г. И.И. Ползунов разработал детальный проект парового двигателя мощностью в 1,8 л.с., а в 1764 г. вместе со своими учениками приступил к созданию «огнедействующей машины». Весной 1766 г. она была практически готова. Из-за скоротечной чахотки самому изобретателю не удалось увидеть свое детище в действии. Испытания паровой машины начались спустя неделю после смерти Ползунова.

Машина Ползунова отличалась от известных в то время паровых двигателей прежде всего тем, что она предназначалась не только для подъема воды, но и для приведения в действие заводских машин — воздуходувных мехов. Это была машина непрерывного действия, чего удалось достичь за счет применения двух цилиндров вместо одного: поршни цилиндров двигались навстречу друг другу и поочередно действовали на общий вал. В своем проекте Ползунов указал все материалы, из которых должна быть изготовлена машина, а также обозначил технологические процессы, которые потребуются при ее сооружении (пайку, литье, полировку). Специалисты утверждают, что докладная записка с изложением проекта отличалась чрезвычайной ясностью мысли и филигранной точностью проведенных расчетов.

По замыслу изобретателя, пар из котла машины подавался в один из двух цилиндров и поднимал поршень до крайнего верхнего положения. После этого в цилиндр из резервуара впрыскивалась охлажденная вода, что приводило к конденсации пара. Под давлением внешней атмосферы поршень опускался, в то время как в другом цилиндре в результате давления пара поршень поднимался. С помощью специального устройства осуществлялись две операции — автоматический впуск пара из котла в цилиндры и автоматическое поступление холодной воды. Система шкивов (специальных колес) передавала движение от поршней к насосам, нагнетавшим воду в резервуар, и воздуходувным мехам.

Параллельно основной машине изобретатель разработал множество новых деталей, приспособлений и устройств, значительно упрощавших процесс производства. В качестве примера можно привести сконструированный им регулятор прямого действия для поддержания постоянного уровня воды в котле. В процессе испытаний обнаружились серьезные дефекты двигателя: неточная обработка поверхностей используемых цилиндров, неплотность воздуходувных мехов, наличие в металлических деталях раковин и др. Эти огрехи объяснялись тем, что уровень машиностроительного производства на Барнаульском заводе был еще недостаточно высоким. А научные достижения того времени не позволяли точно рассчитать необходимое количество охлаждающей воды. Тем не менее все недостатки были решены, и в июне 1766 г. была успешно испытана установка с мехами, после чего началось строительство печей.

  1. Значение паровых машин

насосных станциях , локомотивах , на паровыхсудах, тягачах , паровых автомобилях и других транспортных средствах. Паровые машины способствовалиширокому распространению коммерческого использования машин на предприятиях и явилисьэнергетической основой промышленной революции XVIII века. Позднее паровые машины были вытеснены , паровыми турбинами , электромоторами и атомными реакторами , КПД которых выше.

Паровые турбины , формально являющиеся разновидностью паровых машин, до сих пор широкоиспользуются в качестве приводов генераторов электроэнергии . Примерно 86% электроэнергии,производимой в мире, вырабатывается с использованием паровых турбин.

Принцип действия

Для привода паровой машины необходим паровой котёл . Расширяющийся пар давит на поршень или налопатки паровой турбины , движение которых передаётся другим механическим частям. Одно изпреимуществ двигателей внешнего сгорания в том, что из-за отделения котла от паровой машины они могут использовать практически любой вид топлива — от дров до урана .

  1. Классификация паровых машин

Паровые машины классифицируются по следующим видам.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня вгерметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механическипреобразовано в линейное движение поршневых насосов или во вращательное движение для приводавращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Ранние паровые машины назывались вначале « огневыми машинами», а также « атмосферными » или«конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны такжекак «вакуумные двигатели». Такие машины работали для привода поршневых насосов , во всяком случае, нетникаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумноготипа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан послеэтого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая водараспыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образомсоздаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, ивызывает его перемещение вниз, то есть рабочий ход.

Поршень связан цепью с концом большого коромысла, вращающегося вокруг своей середины. Насос поднагрузкой связан цепью с противоположным концом коромысла, которое под действием насоса возвращаетпоршень к верхней части цилиндра силой гравитации . Так происходит обратный ход. Давление пара низкое ине может противодействовать движению поршня.

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным инеэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем этобыло возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом всотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процессаконденсации в специальную отдельную камеру (конденсатор ). Эта камера помещалась в ванну с холоднойводой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере былаприсоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая вдвижение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячаявода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё однимрадикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части котороготеперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра,поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальнымтрубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во времяследующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела отразницы давлений между паром низкого давления и тем вакуумом, который удавалось получить. В паровоймашине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, вмашине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлосьперейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительнобезопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровнюкотельных технологий XVIII века . Мощность машины ограничивалась низким давлением пара, размерамицилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора.Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороныпоршня; это делало вакуумные машины, предназначенные для промышленного использования, слишкомбольшими и дорогими.

Приблизительно в 1811 году Ричарду Тревитнику потребовалось усовершенствовать машину Уатта, для тогочтобы приспособить её к новым котлам Корниша. Давление пара над поршнем достигло 275 кПа (2,8атмосферы), и именно оно давало основную мощность для совершения рабочего хода; кроме того, былсущественно усовершенствован конденсатор. Такие машины получили название машин Корниша, истроились вплоть до 1890-х годов. Множество старых машин Уатта было реконструировано до этого уровня.Некоторые машины Корниша имели весьма большой размер.

Паровые машины высокого давления

В паровых машинах пар поступает из котла в рабочую камеру цилиндра, где расширяется, оказываядавление на поршень и совершая полезную работу. После этого расширенный пар может выпускаться ватмосферу или поступать в конденсатор. Важное отличие машин высокого давления от вакуумных состоит втом, что давление отработанного пара превышает атмосферное или равно ему, то есть вакуум не создаётся.Отработанный пар обычно имел давление выше атмосферного и часто выбрасывался в дымовую трубу , чтопозволяло увеличить тягу котла.

Важность увеличения давления пара состоит в том, что при этом он приобретает более высокуютемпературу. Таким образом, паровая машина высокого давления работает при большей разницетемператур чем та, которую можно достичь в вакуумных машинах. После того, как машины высокогодавления заменили вакуумные, они стали основой для дальнейшего развития и совершенствования всехвозвратно-поступательных паровых машин. Однако то давление, которое считалось в 1800 году высоким (275—345 кПа), сейчас рассматривается как очень низкое — давление в современных паровых котлах в десяткираз выше.

Дополнительное преимущество машин высокого давления состоит в том, что они намного меньше призаданном уровне мощности, и соответственно, существенно менее дорогие. Кроме того, такая пароваямашина может быть достаточно лёгкой и компактной, чтобы использоваться на транспортных средствах.Возникший в результате паровой транспорт (паровозы, пароходы) революционизировал коммерческие ипассажирские перевозки, военную стратегию, и вообще затронул практически каждый аспект общественной жизни.

Паровые машины двойного действия

Следующим важным шагом в развитии паровых машин высокого давления стало появление машин двойногодействия. В машинах одинарного действия поршень перемещался в одну сторону силой расширяющегосяпара, но обратно он возвращался или под действием гравитации, или за счёт момента инерциивращающегося маховика, соединённого с паровой машиной.

В паровых машинах двойного действия свежий пар поочередно подается в обе стороны рабочего цилиндра,в то время как отработанный пар с другой стороны цилиндра выходит в атмосферу или в конденсатор. Этопотребовало создания достаточно сложного механизма парораспределения. Принцип двойного действияповышает скорость работы машины и улучшает плавность хода.

Поршень такой паровой машины соединён со скользящим штоком, выходящим из цилиндра. К этому штокукрепится качающийся шатун, приводящий в движение кривошип маховика. Система парораспределенияприводится в действие другим кривошипным механизмом . Механизм парораспределения может иметьфункцию реверса для того, чтобы можно было менять направление вращения маховика машины.

Паровая машина двойного действия примерно вдвое мощнее обычной паровой машины, и кроме того,может работать с намного более легким маховиком. Это уменьшает вес и стоимость машин.

Большинство возвратно-поступательных паровых машин использует именно этот принцип работы, чтохорошо видно на примере паровозов. Когда такая машина имеет два или более цилиндров, кривошипыустанавливаются со сдвигом в 90 градусов для того, чтобы гарантировать возможность запуска машины прилюбом положении поршней в цилиндрах. Некоторые колёсные пароходы имели одноцилиндровую паровуюмашину двойного действия, и на них приходилось следить, чтобы колесо не останавливалось в мёртвойточке , то есть в таком положении, при котором запуск машины невозможен.

Паровые турбины

Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии . Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Основной сферой применения паровых турбин является выработка электроэнергии (около 86 % мирового производства электроэнергии производится турбогенераторами , которые приводятся во вращение паровыми турбинами), кроме того, они часто используются в качестве судовых двигателей (в том числе на атомных кораблях и подводных лодках ). Было также построено некоторое количество паротурбовозов , но они не получили широкого распространения и были быстро вытеснены тепловозами и электровозами .

Паровые машины разделяются:

  • по способу действия пара на машины с расширением и без него, причем первые считаются наиболее экономичными
  • по используемому пару
    • низкого давления (до 12 кг/см²)
    • среднего давления (до 60 кг/см²)
    • высокого давления (свыше 60 кг/см²)
  • по числу оборотов вала
    • тихоходные (до 50 об/мин, как на колёсных пароходах )
    • быстроходные.
  • по давлению выпускаемого пара
    • на конденсационные (давление в конденсаторе 0,1—0,2 ата)
    • выхлопные (с давлением 1,1—1,2 ата)
    • теплофикационные с отбором пара на нагревательные цели или для паровых турбин давлением от 1,2 ата до 60 ата в зависимости от назначения отбора (отопление, регенерация, технологические процессы, срабатывание высоких перепадов в предвключённых паровых турбинах ).
  • по расположению цилиндров
    • горизонтальные
    • наклонные
    • вертикальные
  • по числу цилиндров
    • одноцилиндровые
    • многоцилиндровые
      • сдвоенные, строенные и т. д., в которых каждый цилиндр питается свежим паром
      • паровые машины многократного расширения, в которых пар последовательно расширяется в 2, 3, 4 цилиндрах возрастающего объёма, переходя из цилиндра в цилиндр через т. н. ресиверы (коллекторы).

По типу передаточного механизма паровые машины многократного расширения делятся на тандем-машины (рис. 4) и компаунд-машины (рис. 5). Особую группу составляют прямоточные паровые машины , в которых выпуск пара из полости цилиндра осуществляется кромкой поршня.

По их применению: на стационарные машины и нестационарные (в т.ч. передвижные), устанавливаемые на различные типы транспортных средств .
Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты , содержащейся в топливе . Остальная часть энергии выделяется в окружающую среду в виде тепла .
КПД тепловой машины равен

где

W out — механическая работа, Дж;

Q in — затраченное количество теплоты, Дж.

Тепловой двигатель не может иметь КПД больший, чем у цикла Карно , в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура . Следовательно, для паровых двигателей необходимы максимально высокая температура T 1 в начале цикла (достигаемая, например, с помощью пароперегрева ) и как можно более низкая температура T 2 в конце цикла (например, с помощью конденсатора ):

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД в 30—42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать КПД в 50—60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор ). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении, конкретно - при давлении поступающего из котла пара. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C.

  1. Преимущества и недостатки паровой машины

Основным преимуществом паровых машин, как двигателей внешнего сгорания, в том, что из-за отделения котла от паровой машины можно использовать практически любой вид топлива (источник тепла) — от кизяка до урана . Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия . Интересным направлением является использование энергии разности температур Мирового океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930-х годов , со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными тепловозами и электровозами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии , передавая усилие непосредственно на колёса.

  1. Применение паровой машины

Вплоть до середины XX в. паровые машины широко применялись в тех областях, где их положительные качества (большая надёжность, возможность работы с большими колебаниями нагрузки, возможность длительных перегрузок, долговечность, невысокие эксплуатационные расходы, простота обслуживания и лёгкость реверсирования) делали применение паровой машины более целесообразным, чем применение других двигателей, несмотря на её недостатки, вытекающие главным образом из наличия кривошипно-шатунного механизма. К таким областям относятся: железнодорожный транспорт (см. паровоз ); водный транспорт (см. пароход ), где паровая машина делила своё применение с двигателями внутреннего сгорания и паровыми турбинами; промышленные предприятия с силовым и тепловым потреблением: сахарные заводы, спичечные, текстильные, бумажные фабрики, отдельные пищевые предприятия. Характер теплового потребления этих предприятий определял тепловую схему установки и соответствующий ей тип теплофикационной паровой машины: с концевым или промежуточным отбором пара.

Теплофикационные установки дают возможность уменьшать на 5—20 % расход топлива по сравнению с раздельным и установками, состоящими из конденсационных паровых машин и отдельных котёльных, производящих пар на технологические процессы и отопление. Проведённые в СССР исследования показали целесообразность перевода раздельных установок на теплофикационные путём введения регулируемого отбора пара из ресивера паровой машины двойного расширения. Возможность работы на любых видах топлива делала целесообразным применение паровых машин для работы на отходах производства и сельского хозяйства : на лесозаводах, в локомобильных установках и т. п., особенно при наличии теплового потребления, как, например, на деревообрабатывающих предприятиях, имеющих горючие отходы и потребляющих низкопотенциальное тепло для целей сушки лесоматериалов.

Паровая машина удобна для применения в безрельсовом транспорте , так как не требует коробки скоростей , однако она не получила здесь распространения из-за некоторых не разрешённых конструктивных трудностей. Также: паровой трактор , паровой экскаватор , и даже паровой самолёт .

Паровые машины использовались как приводной двигатель в насосных станциях , локомотивах , на паровых судах , тягачах , и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Поздние паровые машины были вытеснены двигателями внутреннего сгорания , паровыми турбинами и электромоторами , КПД которых выше.

Паровые турбины , формально являющиеся разновидностью паровых машин, до сих пор широко используются в качестве приводов генераторов электроэнергии . Примерно 86 % электроэнергии, производимой в мире, вырабатывается с использованием паровых турбин.

Заключение

Последствиями создания парового двигателя становятся:

Промышленная революция;

- массовая эмиграция жителей Европы в Новый Свет (пароходы двигались быстрее и перевозили гораздо больше пассажиров, чем парусники)

- создание железнодорожного транспорта (в США, например, позволило начать освоение Дикого Запада)
- дальнейшее развитие военной техники.

Громоздкие, тяжелые и неэкономичные паровые машины в наше время полностью вытеснены паровыми турбинами и двигателями внутреннего сгорания.

Любая машина и технологический процесс ее изготовления непрерывно совершенствуются. Изобретатели и рационализаторы, работающие на производстве, создают новые машины, оборудование, приборы и вносят много различных предложений по усовершенствованию действующих машин и оборудования.

Задача техники- преобразовывать природу и мир человека в соответствии с целями, поставленными людьми на основе их нужд и желаний. Без техники люди не смогли бы справиться с окружающей их природной средой. Техника следовательно, - это необходимая часть человеческого существования на протяжении всей истории…

Интернет источники

  1. http://www.iq-coaching.ru/razvitie-mashinostroeniya/vidy-dvigatelei/68.html
    1. http://vsedvigateli.narod.ru/1/tep_dvig/dvig_vnesh_sg/par_dvig/par_dvig.htm
      1. http://dic.academic.ru/dic.nsf/ruwiki/1086627#.D0.98.D0.B7.D0.BE.D0.B1.D1.80.D0.B5.D1.82.D0.B5.D0.BD.D0.B8.D0.B5_.D0.B8_.D1.80.D0.B0.D0.B7.D0.B2.D0.B8.D1.82.D0.B8.D0.B5
      2. http://class-fizika.narod.ru/parpols.htm
      3. http://helpiks.org/2-16428.html
      4. http://www.youtube.com/watch?v=FIO6n5tqpx8
      5. https://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%B0
      6. http://5klass.net/fizika-10-klass/Izobretenie-parovoj-mashiny/005-Parovaja-mashina-T.-Njukomena.html

Вопросы для аудитории:

  1. Что такое паровой двигатель?
    1. Российский ученый, разработавший детальный проект парового двигателя мощностью в 1,8 л.с
      1. Основные преимущества паровой машины.
      2. Недостатки паровой машины.
      3. К чему привело создание парового двигателя?

PAGE \* MERGEFORMAT 1

Другие похожие работы, которые могут вас заинтересовать.вшм>

15561. Параллельная машина 168.06 KB
Это обстоятельство вызвано не только принципиальным ограничением максимально возможного быстродействия обычных последовательных ЭВМ но и постоянным существованием вычислительных задач для решения которых возможностей существующих средств вычислительной техники всегда оказывается недостаточно. - требуют для своего анализа ЭВМ с производительностью более 1000 миллиардов операций с плавающей запятой в сек. С появлением параллельных систем возникли новые проблемы: как обеспечить эффективное решение задач на той или иной параллельной...
12578. Паровая конденсационная многоступенчатая одноцилиндровая турбина на средние параметры пара мощностью 19000 кВт 1.46 MB
При проектировании проточной части требуется спроектировать ее так, чтобы располагаемый теплоперепад был преобразован в механическую работу с максимальным коэффициентом полезного действия; чтобы турбина была надежной и долговечной, конструкция ее простой и технологичной, дешевой и малогабаритной.

Паровые машины использовались как приводной двигатель в насосных станциях , локомотивах , на паровых судах, тягачах , паровых автомобилях и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции XVIII века. Поздние паровые машины были вытеснены двигателями внутреннего сгорания , паровыми турбинами и электромоторами , КПД которых выше.

Изобретение и развитие

Первое известное устройство, приводимое в движение паром, было описано Героном Александрийским в первом столетии. Пар, выходящий по касательной из дюз , закреплённых на шаре, заставлял последний вращаться. Реальная паровая турбина была изобретена намного позже, в средневековом Египте , арабским философом, астрономом и инженером XVI века Таки ад-Дином Мухаммедом (англ. ). Он предложил метод вращения вертела посредством потока пара, направляемого на лопасти, закреплённые по ободу колеса. Подобную машину предложил в 1629 году итальянский инженер Джованни Бранка для вращения цилиндрического анкерного устройства, которое поочерёдно поднимало и отпускало пару пестов в ступах . Паровой поток в этих ранних паровых турбинах был не концентрированным, и большая часть его энергии рассеивалась во всех направлениях, что приводило к значительным потерям энергии.

Однако дальнейшее развитие парового двигателя требовало экономических условий, в которых разработчики двигателей могли бы воспользоваться их результатами. Таких условий не было ни в античную эпоху, ни в средневековье, ни в эпоху Возрождения . Только в конце 17-го столетия паровые двигатели были созданы как единичные курьёзы. Первая машина была создана испанским изобретателем Херонимо Аянсом де Бомонт, изобретения которого повлияли на патент Т. Севери (см. ниже). Принцип действия и применение паровых машин было описано также в 1655 году англичанином Эдвардом Сомерсетом. В 1663 году он опубликовал проект и установил приводимое в движение паром устройство для подъёма воды на стену Большой башни в замке Реглан (углубления в стене, где двигатель был установлен, были ещё заметны в 19-ом столетии). Однако никто не был готов рисковать деньгами для этой новой революционной концепции, и паровая машина осталась неразработанной. Одним из опытов французского физика и изобретателя Дени Папена было создание вакуума в закрытом цилиндре. В середине 1670-х в Париже он в сотрудничестве с голландским физиком Гюйгенсом работал над машиной, которая вытесняла воздух из цилиндра путём взрыва пороха в нём. Видя неполноту вакуума, создаваемого при этом, Папен после приезда в Англию в 1680 году создал вариант такого же цилиндра, в котором получил более полный вакуум с помощью кипящей воды, которая конденсировалась в цилиндре. Таким образом, он смог поднять груз, присоединённый к поршню верёвкой, перекинутой через шкив . Система работала, как демонстрационная модель, но для повторения процесса весь аппарат должен был быть демонтирован и повторно собран. Папен быстро понял, что для автоматизации цикла пар должен быть произведён отдельно в котле. Поэтому Папен считается изобретателем парового котла, проложив таким образом путь к паровому двигателю Ньюкомена . Однако конструкцию действующей паровой машины он не предложил. Папен также проектировал лодку , приводимую в движение колесом с реактивной силой в комбинации концепций Таки ад-Дина и Севери; ему также приписывают изобретение множества важных устройств, например, предохранительного клапана .

Ни одно из описанных устройств фактически не было применено как средство решения полезных задач. Первым применённым на производстве паровым двигателем была «пожарная установка», сконструированная английским военным инженером Томасом Севери в 1698 году . На своё устройство Севери в 1698 году получил патент. Это был поршневой паровой насос, и, очевидно, не слишком эффективный, так как тепло пара каждый раз терялось во время охлаждения контейнера, и довольно опасный в эксплуатации, так как вследствие высокого давления пара ёмкости и трубопроводы двигателя иногда взрывались. Так как это устройство можно было использовать как для вращения колёс водяной мельницы, так и для откачки воды из шахт изобретатель назвал его «другом рудокопа».

Первая в России двухцилиндровая вакуумная паровая машина была спроектирована механиком И. И. Ползуновым в 1763 году и построена в 1764 году для приведения в действие воздуходувных мехов на Барнаульских Колывано-Воскресенских заводах.

Дальнейшим повышением эффективности было применение пара высокого давления (американец Оливер Эванс и англичанин Ричард Тревитик). Тревитик успешно построил промышленные однотактовые двигатели высокого давления, известные как «корнуэльские двигатели». Они работали с давлением 50 фунтов на квадратный дюйм , или 345 кПа (3,405 атмосферы). Однако с увеличением давления возникала и большая опасность взрывов в машинах и котлах, что приводило вначале к многочисленным авариям. С этой точки зрения наиболее важным элементом машины высокого давления был предохранительный клапан, который выпускал лишнее давление. Надёжная и безопасная эксплуатация началась только с накоплением опыта и стандартизацией процедур сооружения, эксплуатации и обслуживания оборудования. Французский изобретатель Николас-Йозеф Куньо в 1769 году продемонстрировал первое действующее самоходное паровое транспортное средство: «fardier à vapeur» (паровую телегу). Возможно, его изобретение можно считать первым автомобилем . Самоходный паровой трактор оказался очень полезным в качестве мобильного источника механической энергии, приводившего в движение другие сельскохозяйственные машины: молотилки , прессы и др. В 1788 году пароход , построенный Джоном Фитчем, уже осуществлял регулярное сообщение по реке Делавер между Филадельфией (штат Пенсильвания) и Берлингтоном (штат Нью-Йорк). Он поднимал на борт 30 пассажиров и шёл со скоростью 7-8 узлов . 21 февраля 1804 года на металлургическом заводе Пенидаррен в Мертир-Тидвиле в Южном Уэльсе демонстрировался первый самоходный железнодорожный паровой локомотив , построенный Ричардом Тревитиком.

Паровые машины с возвратно-поступательным движением

Двигатели с возвратно-поступательным движением используют энергию пара для перемещения поршня в герметичной камере или цилиндре. Возвратно-поступательное действие поршня может быть механически преобразовано в линейное движение поршневых насосов или во вращательное движение для привода вращающихся частей станков или колёс транспортных средств.

Вакуумные машины

Гравюра двигателя Ньюкомена. Это изображение скопировано с рисунка в работе Дезаглирса «курс экспериментальной философии», 1744, которая является изменённой копией гравюры Генри Битона, датированной 1717 годом. Вероятно, изображён второй двигатель [хой]Ньюкомена, установленный приблизительно в 1714 в угольной шахте Гриф в Уоркшире.

Ранние паровые машины назывались вначале «огневыми машинами», а также «атмосферными » или «конденсирующими» двигателями Уатта. Они работали на вакуумном принципе и поэтому известны также как «вакуумные двигатели». Такие машины работали для привода поршневых насосов , во всяком случае, нет никаких свидетельств о том, что они использовались в иных целях. При работе паровой машины вакуумного типа в начале такта пар низкого давления впускается в рабочую камеру или цилиндр. Впускной клапан после этого закрывается, и пар охлаждается, конденсируясь. В двигателе Ньюкомена охлаждающая вода распыляется непосредственно в цилиндр, и конденсат сбегает в сборник конденсата. Таким образом создаётся вакуум в цилиндре. Атмосферное давление в верхней части цилиндра давит на поршень, и вызывает его перемещение вниз, то есть рабочий ход.

Постоянное охлаждение и повторное нагревание рабочего цилиндра машины было очень расточительным и неэффективным, тем не менее, эти паровые машины позволяли откачивать воду с большей глубины, чем это было возможно до их появления. В 1774 году появилась версия паровой машины, созданная Уаттом в сотрудничестве с Мэттью Боултоном, основным нововведением которой стало вынесение процесса конденсации в специальную отдельную камеру (конденсатор). Эта камера помещалась в ванну с холодной водой, и соединялась с цилиндром трубкой, перекрывающейся клапаном. К конденсационной камере была присоединена специальная небольшая вакуумная помпа (прообраз конденсатного насоса), приводимая в движение коромыслом и служащая для удаления конденсата из конденсатора. Образовавшаяся горячая вода подавалась специальным насосом (прообразом питательного насоса) обратно в котёл. Ещё одним радикальным нововведением стало закрытие верхнего конца рабочего цилиндра, в верхней части которого теперь находился пар низкого давления. Этот же пар присутствовал в двойной рубашке цилиндра, поддерживая его постоянную температуру. Во время движения поршня вверх этот пар по специальным трубкам передавался в нижнюю часть цилиндра, для того, чтобы подвергнуться конденсации во время следующего такта. Машина, по сути, перестала быть «атмосферной», и её мощность теперь зависела от разницы давлений между паром низкого давления и тем вакуумом, который удавалось получить.

Версия паровой машины, созданная Уаттом

В паровой машине Ньюкомена смазка поршня осуществлялась небольшим количеством налитой на него сверху воды, в машине Уатта это стало невозможным, поскольку в верхней части цилиндра теперь находился пар, пришлось перейти на смазку смесью тавота и нефти. Такая же смазка использовалась в сальнике штока цилиндра.

Вакуумные паровые машины, несмотря на очевидные ограничение их эффективности, были относительно безопасны, использовали пар низкого давления, что вполне соответствовало общему невысокому уровню котельных технологий XVIII века . Мощность машины ограничивалась низким давлением пара, размерами цилиндра, скоростью сгорания топлива и испарения воды в котле, а также размерами конденсатора. Максимальный теоретический КПД был ограничен относительно малой разницей температур по обе стороны поршня; это делало вакуумные машины, предназначенные для промышленного использования, слишком большими и дорогими.

Парораспределение

Индикаторная диаграмма, показывающая четырёхфазный цикл поршневой паровой машины двойного действия

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз - впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем.

Сжатие

Выпускное окно цилиндра паровой машины перекрывается несколько раньше, чем поршень доходит до своего крайнего положения, что оставляет в цилиндре некоторое количество отработанного пара. Это означает, что в цикле работы присутствует фаза сжатия, формирующая так называемую «паровую подушку» , замедляющую движение поршня в его крайних положениях. Кроме того, это устраняет резкий перепад давления в самом начале фазы впуска, когда в цилиндр поступает свежий пар.

Опережение

Описанный эффект «паровой подушки» усиливается также тем, что впуск свежего пара в цилиндр начинается несколько раньше, чем поршень достигнет крайнего положения, то есть присутствует некоторое опережение впуска. Это опережение необходимо для того, чтобы перед тем, как поршень начнёт свой рабочий ход под действием свежего пара, пар успел бы заполнить то мёртвоё пространство, которое возникло в результате предыдущей фазы, то есть каналы впуска-выпуска и неиспользуемый для движения поршня объём цилиндра.

Простое расширение

Простое расширение предполагает, что пар работает только при расширении его в цилиндре, а отработанный пар выпускается напрямую в атмосферу или поступает в специальный конденсатор. Остаточное тепло пара при этом может быть использовано, например, для обогрева помещения или транспортного средства, а также для предварительного подогрева воды, поступающей в котёл.

Компаунд

В процессе расширения в цилиндре машины высокого давления температура пара падает пропорционально его расширению. Поскольку теплового обмена при этом не происходит (адиабатический процесс), получается, что пар поступает в цилиндр с большей температурой, чем выходит из него. Подобные перепады температуры в цилиндре приводят к снижению эффективности процесса.

Один из методов борьбы с этим перепадом температур был предложен в 1804 году английским инженером Артуром Вульфом, который запатентовал Компаундную паровую машину высокого давления Вульфа . В этой машине высокотемпературный пар из парового котла поступал в цилиндр высокого давления, а после этого отработанный в нём пар с более низкой температурой и давлением поступал в цилиндр (или цилиндры) низкого давления. Это уменьшало перепад температуры в каждом цилиндре, что в целом снижало температурные потери и улучшало общий коэффициент полезного действия паровой машины. Пар низкого давления имел больший объём, и поэтому требовал большего объёма цилиндра. Поэтому в компаудных машинах цилиндры низкого давления имели больший диаметр (а иногда и большую длину) чем цилиндры высокого давления.

Такая схема также известна под названием «двойное расширение», поскольку расширение пара происходит в две стадии. Иногда один цилиндр высокого давления был связан с двумя цилиндрами низкого давления, что давало три приблизительно одинаковых по размеру цилиндра. Такую схему было легче сбалансировать.

Двухцилиндровые компаундные машины могут быть классифицированы как:

  • Перекрёстный компаунд - Цилиндры расположены рядом, их паропроводящие каналы перекрещены.
  • Тандемный компаунд - Цилиндры располагаются последовательно, и используют один шток.
  • Угловой компаунд - Цилиндры расположены под углом друг к другу, обычно 90 градусов, и работают на один кривошип.

После 1880-х годов компаундные паровые машины получили широкое распространение на производстве и транспорте и стали практически единственным типом, используемым на пароходах. Использование их на паровозах не получило такого широкого распространения, поскольку они оказались слишком сложными, частично из-за того, что сложными были условия работы паровых машин на железнодорожном транспорте . Несмотря на то, что компаундные паровозы так и не стали массовым явлением (особенно в Великобритании, где они были очень мало распространены и вообще не использовались после 1930-х годов), они получили определённую популярность в нескольких странах.

Множественное расширение

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых турбинах используется тот же принцип разделения потока на секции высокого, среднего и низкого давления.

Прямоточные паровые машины

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

Паровые турбины

Паровая турбина представляет собой барабан либо серию вращающихся дисков, закреплённых на единой оси, их называют ротором турбины, и серию чередующихся с ними неподвижных дисков, закреплённых на основании, называемых статором. Диски ротора имеют лопатки на внешней стороне, пар подается на эти лопатки и крутит диски. Диски статора имеют аналогичные (в активных, либо подобные в реактивных) лопатки, установленные под противоположным углом, которые служат для перенаправления потока пара на следующие за ними диски ротора. Каждый диск ротора и соответствующий ему диск статора называются ступенью турбины. Количество и размер ступеней каждой турбины подбираются таким образом, чтобы максимально использовать полезную энергию пара той скорости и давления, который в неё подается. Выходящий из турбины отработанный пар поступает в конденсатор. Турбины вращаются с очень высокой скоростью, и поэтому при передаче вращения на другое оборудование обычно используются специальные понижающие трансмиссии . Кроме того, турбины не могут изменять направление своего вращения, и часто требуют дополнительных механизмов реверса (иногда используются дополнительные ступени обратного вращения).

Турбины превращают энергию пара непосредственно во вращение и не требуют дополнительных механизмов преобразования возвратно-поступательного движения во вращение. Кроме того, турбины компактнее возвратно-поступательных машин и имеют постоянное усилие на выходном валу. Поскольку турбины имеют более простую конструкцию, они, как правило, требуют меньшего обслуживания.

Другие типы паровых двигателей

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» - «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины - с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок - «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания.

Применение

Паровые машины могут быть классифицированы по их применению следующим образом:

Стационарные машины

Паровой молот

Паровая машина на старой сахарной фабрике, Куба

Стационарные паровые машины могут быть разделены на два типа по режиму использования:

  • Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.
  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

Транспортные машины

Паровые машины использовались для привода различных типов транспортных средств, среди них:

  • Сухопутные транспортные средства:
    • Паровой трактор
    • Паровой экскаватор, и даже
  • Паровой самолёт.

В России первый действующий паровоз был построен Е. А. и М. Е. Черепановыми на Нижне-Тагильском заводе в 1834 году для перевозки руды. Он развивал скорость 13 вёрст в час и перевозил более 200 пудов (3,2 тонны) груза. Длина первой железной дороги составляла 850 м.

Преимущества паровых машин

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах.

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) -х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 - 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 - 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н.

Интерес к водяному пару, как доступному источнику энергии, появился вместе с первыми научными познаниями древних. Приручить эту энергию люди пытались на протяжении трёх тысячелетий. Каковы основные этапы этого пути? Чьи размышления и проекты научили человечество извлекать из него максимальную пользу?

Предпосылки появления паровых двигателей

Потребность в механизмах, способных облегчить трудоёмкие процессы, существовала всегда. Примерно до середины XVIII века для этой цели использовались ветряные мельницы и водяные колеса. Возможность использования энергии ветра напрямую зависит от капризов погоды. А для использования водяных колёс фабрики приходилось строить по берегам рек, что не всегда удобно и целесообразно. Да и эффективность тех и других была чрезвычайно мала. Нужен был принципиально новый двигатель, легко управляемый и лишённый этих недостатков.

История изобретения и совершенствования паровых двигателей

Создание парового двигателя - результат долгих размышлений, удач и крушений надежд множества учёных.

Начало пути

Первые, единичные проекты были лишь интересными диковинками. Например, Архимед сконструировал паровую пушку, Герон Александрийский использовал энергию пара для открывания дверей античных храмов. А заметки о практическом применении энергии пара для приведения в действие иных механизмов исследователи находят в трудах Леонардо да Винчи.

Рассмотрим наиболее значительные проекты по этой тематике.

В XVI веке арабский инженер Таги аль Дин разработал проект примитивной паровой турбины. Однако практического применения она не получила из-за сильного рассеяния струи пара, подаваемой на лопасти колеса турбины.

Перенесемся в средневековую Францию. Физик и талантливый изобретатель Дени Папен после многих неудачных проектов останавливается на следующей конструкции: вертикальный цилиндр заполняли водой, над которой устанавливали поршень.

Цилиндр нагревали, вода закипала и испарялась. Расширяющийся пар приподнимал поршень. Его закрепляли в верхней точке подъёма и ожидали остывания цилиндра и конденсации пара. После конденсации пара в цилиндре образовывался вакуум. Освобожденный от крепления поршень под действием атмосферного давления устремлялся в вакуум. Именно это падение поршня предполагалось использовать как рабочий ход.

Итак, полезный ход поршня был вызван образованием вакуума из-за конденсации пара и внешним (атмосферным) давлением.

Потому паровой двигатель Папена как и большинство последующих проектов получили название пароатмосферных машин.

Эта конструкция обладала весьма существенным недостатком - не была предусмотрена повторяемость цикла. Дени приходит к идее получать пар не в цилиндре, а отдельно в паровом котле.

В историю создания паровых двигателей Дени Папен вошел как изобретатель весьма важной детали - парового котла.

А поскольку пар стали получать вне цилиндра, сам двигатель перешел в разряд двигателей внешнего сгорания. Но из-за отсутствия распределительного механизма, обеспечивающего бесперебойную работу, эти проекты почти не нашли практического применения.

Новый этап в разработке паровых двигателей

Около 50 лет для откачки воды в угольных шахтах использовался паровой насос Томаса Ньюкомена. Он во многом повторял предыдущие конструкции, но содержал весьма важные новинки - трубу для вывода сконденсированного пара и предохранительный клапан для выпуска излишнего пара.

Его существенным минусом было то, что цилиндр приходилось то нагревать перед впрыскиванием пара, то охлаждать перед его конденсацией. Но потребность в таких двигателях была столь высока, что, несмотря на их очевидную неэкономичность, последние экземпляры этих машин прослужили вплоть до 1930 года.

В 1765 году английский механик Джеймс Уатт, занявшись усовершенствованием машины Ньюкомена, отделил конденсатор от парового цилиндра.

Появилась возможность цилиндр держать постоянно нагретым. КПД машины сразу вырос. В последующие годы Уатт значительно усовершенствует свою модель, оснастив её устройством для подачи пара то с одной, то с другой стороны.

Стало возможным использовать эту машину не только как насос, но и для приведения в действие различных станков. Уатт получил патент на свое изобретение - паровой двигатель непрерывного действия. Начинается массовый выпуск этих машин.

К началу XIX века в Англии работало более 320 паровых машин Уатта. Их стали закупать и другие европейские страны. Это способствовало значительному росту промышленного производства во многих отраслях как самой Англии, так соседних государств.

Двадцатью годами ранее Уатта, в России над проектом паровой машины работал алтайский механик Иван Иванович Ползунов.

Заводское начальство предложило ему построить агрегат, который приводил бы в действие воздуходувку плавильной печи.

Построенная им машина была двухцилиндровой и обеспечивала непрерывное действие подсоединённого к ней устройства.

Успешно проработав более полутора месяцев, котёл дал течь. Самого Ползунова к этому времени уже не было в живых. Ремонтировать машину не стали. И замечательное творение русского изобретателя-одиночки было забыто.

В силу отсталости России того времени мир узнал об изобретении И. И. Ползунова с большим опозданием….

Итак, для приведения в действие паровой машины необходимо, чтобы пар, вырабатываемый паровым котлом, расширяясь, давил на поршень или на лопасти турбины. А затем их движение передавалось другим механическим частям.

Применение паровых машин на транспорте

Несмотря на то, что КПД паровых двигателей того времени не превышал 5%, к концу XVIII века их стали активно использовать в сельском хозяйстве и на транспорте:

  • во Франции появляется автомобиль с паровым двигателем;
  • в США начинает курсировать пароход между городами Филадельфия и Берлингтон;
  • в Англии продемонстрирован железнодорожный локомотив на паровой тяге;
  • российский крестьянин из Саратовской губернии запатентовал построенный им гусеничный трактор мощностью 20 л. с.;
  • неоднократно предпринимались попытки построить самолёт с паровым двигателем, но, к сожалению, малая мощность этих агрегатов при большом весе самолёта делала эти попытки неудачными.

Уже к концу XIX столетия паровые двигатели, сыграв свою роль в техническом прогрессе общества, уступают место и электродвигателям.

Паровые устройства в XXI веке

С появлением новых источников энергии в XX и XXI веке снова появляется потребность в использовании энергии пара. Паровые турбины становятся неотъемлемой частью АЭС. Пар, приводящий их в действие, получают за счёт ядерного топлива.

Широко используются эти турбины и на конденсационных тепловых электростанциях.

В ряде стран проводятся эксперименты по получению пара за счёт солнечной энергии.

Не забыты и поршневые паровые двигатели. В горных местностях в качестве локомотива до сих пор используют паровозы.

Эти надёжные труженики и безопаснее, и дешевле. Линии электропередач им не нужны, а топливо - древесина и дешёвые сорта угля всегда под рукой.

Современные технологии позволяют улавливать до 95% выбросов в атмосферу и повысить КПД до 21%, так, что люди решили пока с ними не расставаться и работают над паровыми локомотивами нового поколения.

Если это сообщение тебе пригодилось, буда рада видеть тебя