Двигатель внешнего сгорания стирлинга. Как работает двигатель стирлинга

Из прошлого - в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя - стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично - на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

1 - рабочий цилиндр, 2 - поршень; 3 - компрессор; 4 - всасывающий клапан; 5 - нагнетательный клапан; 6 - промежуточный резервуар; 7 - регенератор; 8 - перепускной золотник; 9 - выхлопная труба; 10 - всасывающая труба; 11 -топка.

И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…

Сжатие, нагрев, расширение, охлаждение - вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой - получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу - циклу Карно - должен работать двигатель с самым высоким к.п.д.

Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.

В начале нашего века движки Эриксона небольшой мощности (порядка 10-20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.

Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.

1 - рабочий поршень 2 - поршень-вытеснитель; 3 - охладитель; 4 - нагреватель; 5 - регенератор; 6 - холодное пространство; 7 - горячее пространство.

Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.

Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.

…Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200-400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.

Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный - давно забытый двигатель Стирлинга.

Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие - замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.

Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе - то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6-7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение - 1,5-2 кг на л. с. Они еще более компактны и легки.

Итак, схема стала двухконтурной: один контур с рабочим агентом и второй - подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. - до 38-40 процентов. Для сравнения:современ-

ные дизели имеют к.п.д. 34-38 процентов, а карбюраторные двигатели - 25-28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность - по выходу окиси углерода в 200 раз, по окиси азота - на 1-2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.

Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема - горячая, она непрерывно нагревается. Нижняя - холодная, все время охлаждается водой. В том же объеме - цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз - расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа - рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.

Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.

1 - топливная форсунка; 2 - выхлоп охлажденных газов, 3 - воздухонагреватель; 4 - выход горячих газов; 5 - горячее пространство; 6 - регенератор; 7 - цилиндр; 8 - трубки охладителя; 9 - холодное пространство; 10 - рабочий поршень; 11 - ромбический привод; 12 - камера сгорания; 13 - трубки нагревателя; 14 - поршень-вытеснитель; 15 - впуск воздуха для сжигания топлива; 16 - буферная полость.

Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами - так появляется довольно сложный контур сгорания.

Холодная часть рабочего объема - тоже система трубок, в которые нагнетается охлаждающая вода.

Под рабочим поршнем - замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.

По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. - это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.

Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.

Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.

Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ - и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48-50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.

Еще одна интересная разработка - привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.

Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.

Автомобиль со стирлингом может работать на любом виде.топлива, а при необходимости - на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.

Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.

К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.

Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.

А. АЛЕКСЕЕВ

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.

С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.

Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.

Роберт Стирлинг (1790-1878 года жизни):

История двигателя Стирлинга

Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.

Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.

Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:

P*V=n*R*T

  • P – сила действия газа в двигателе на единицу площади;
  • V – количественная величина, занимаемая газом в пространстве двигателя;
  • n – молярное количество газа в двигателе;
  • R – постоянная газа;
  • T – степень нагрева газа в двигателе К,

Модель двигателя Стирлинга:


За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.

Цикл

Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.

Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальные круговые явления:

  • 1-2 Изменение линейных размеров вещества с постоянной температурой;
  • 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
  • 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
  • 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Из расчёта (моль) вещества:

Подводимое тепло:

Получаемое охладителем тепло:

Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):

R – Универсальная постоянная газа;

СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.

За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.

КПД кругового явления:

ɳ =

Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.

Принцип работы двигателя

Что бы понять, как работает двигатель Стирлинга, разберёмся в устройстве и периодичности явлений агрегата. Механизм преобразует тепло, полученное от нагревателя, находящегося за пределами изделия в действие силы на тело. Весь процесс происходит благодаря температурному перепаду, в рабочем веществе, находящемся в закрытом контуре.


Принцип действия механизма базируется на расширении за счёт тепла. Непосредственно до расширения, вещество в замкнутом контуре нагревается. Соответственно, перед тем, как сжаться, вещество охлаждают. Сам цилиндр (1) окутан водяной рубашкой (3), ко дну подается тепло. Поршень, совершающий работу (4) помещен в гильзу и уплотнён кольцами. Между поршнем и дном находится механизм вытеснения (2), имеющий значительные зазоры и свободно перемещающийся. Вещество, находящееся в замкнутом контуре, двигается по объёму камеры за счёт вытеснителя. Перемещение вещества ограничено двумя направлениями: дно поршня, дно цилиндра. Движение вытеснителя обеспечивает шток (5), который проходит через поршень и функционирует за счет эксцентрика с запаздыванием на 90° в сравнении с приводом поршня.

  • Позиция «A»:

Поршень расположен в крайнем нижнем положении, вещество охлаждается за счет стенок.

  • Позиция «B»:

Вытеснитель занимает верхнее положение, перемещаясь, пропускает вещество через торцевые щели ко дну, сам охлаждается. Поршень стоит неподвижно.

  • Позиция «C»:

Вещество получает тепло, под действием тепла увеличивается в объёме и поднимает расширитель с поршнем вверх. Совершается работа, после чего вытеснитель опускается на дно, выталкивая вещество и охлаждаясь.

  • Позиция «D»:

Поршень опускается вниз, сжимает охлаждённое вещество, выполняется полезная работа. Маховик служит в конструкции аккумулятором энергии.

Рассмотренная модель без регенератора, поэтому КПД механизма не велико. Тепло вещества после совершения работы отводится в охлаждающую жидкость, используя стенки. Температура не успевает снижаться на нужную величину, поэтому время охлаждения продлевается, скорость мотора маленькая.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:


Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

  • Двигатель «β – Стирлинг»:


Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

  • Двигатель «γ – Стирлинг»:


Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Некоторые силовые установки не похожи на основные виды двигателей:

  • Роторный двигатель Стирлинга.


Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.

  • Термоакустический двигатель Стирлинга.


Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.

Двигатель Стирлинга своими руками

Сегодня довольно часто в интернет магазине можно встретить сувенирную продукцию, выполненную в виде рассматриваемого двигателя. Конструктивно и технологично механизмы довольно просты, при желании двигатель Стирлинга легко сконструировать своими руками из подручных средств. В интернете можно найти большое количество материалов: видео, чертежи, расчёты и прочая информация на эту тему.

Низкотемпературный двигатель Стирлинга:


  • Рассмотрим самый простой вариант волнового двигателя, для выполнения которого понадобится консервная банка, мягкая полиуретановая пена, диск, болты и канцелярские скрепки. Все эти материалы легко найти дома, осталось выполнение следующих действий:
  • Возьмите мягкую полиуретановую пену, вырежьте на два миллиметра меньшим диаметром от внутреннего диаметра консервной банки круг. Высота пены на два миллиметра больше половины высоты банки. Поролон играет роль вытеснителя в двигателе;
  • Возьмите крышку банки, в средине проделайте дырку, диаметр два миллиметра. Припаяйте к отверстию полый шток, который будет выполнять, роль направляющей для шатуна двигателя;
  • Возьмите круг, вырезанный из пены, вставьте в средину круга винтик и застопорите с двух сторон. К шайбе припаяйте предварительно выпрямленную скрепку;
  • В двух сантиметрах от центра просверлите дырочку, диаметром три миллиметра, проденьте вытеснитель через центральное отверстие крышки, припаяйте крышку к банке;
  • Сделайте из жести небольшой цилиндр, диаметром полтора сантиметра, припаяйте его к крышке банки таким образом, что бы боковое отверстие крышки оказалось чётко по центру внутри цилиндра двигателя;
  • Сделайте коленчатый вал двигателя из скрепки. Расчёт выполняется таким образом, что бы разнос колен был 90°;
  • Изготовьте стойку под коленчатый вал двигателя. Из полиэтиленовой плёнки сделайте упругую перепонку, наденьте плёнку на цилиндр, продавите её, зафиксируйте;


  • Самостоятельно изготовьте шатун двигателя, один конец выпрямленного изделия выгнете в форме кружка, второй конец вставьте в кусочек ластика. Длина подгоняется таким образом, что бы в крайней нижней точке вала перепонка была втянута, в крайней верхней точке, перепонка максимально вытянута. Настройте другой шатун по такому же принципу;
  • Шатун двигателя с резиновым наконечником приклейте к перепонке. Шатун без резинового наконечника закрепите на вытеснителе;
  • Наденьте на кривошипный механизм двигателя маховик из диска. К банке приделайте ножки, чтобы не держать изделие в руках. Высота ножек позволяет разместить под банкой свечку.

После того, как удалось сделать двигатель Стирлинга дома, мотор запускают. Для этого под банку помещают зажженную свечку, а после того, как банка прогрелась, дают толчок маховику.


Рассмотренный вариант установки можно быстро собрать у себя дома, как наглядное пособие. Если задаться целью и желанием сделать двигатель Стирлинга максимально приближённый к заводским аналогам, в свободном доступе есть чертежи всех деталей. Пошаговое выполнение каждого узла позволит создать работающий макет ни чем не хуже коммерческих версий.

Преимущества

Для двигателя Стирлинга характерны такие плюсы:

  • Для работы двигателя необходим температурный перепад, какое топливо вызывает нагрев не важно;
  • Нет необходимости использовать навесное и вспомогательное оборудование, конструкция двигателя простая и надёжная;
  • Ресурс двигателя, благодаря особенностям конструкции, составляет 100000 часов работы;
  • Работа двигателя не создаёт постороннего шума, поскольку отсутствует детонация;
  • Процесс работы двигателя не сопровождается выбросом отработанных веществ;
  • Работа двигателя сопровождается минимальной вибрацией;
  • Процессы в цилиндрах установки экологически безвредны. Использование правильного источника тепла позволяет сделать двигатель «чистым».

Недостатки

К недостаткам двигателя Стирлинга относятся:

  • Трудно наладить серийное производство, поскольку конструктивно двигатель требует использования большого количества материалов;
  • Высокий вес и большие габариты двигателя, поскольку для эффективного охлаждения надо применять большой радиатор;
  • Для повышения эффективности двигатель форсируют, применяя в качестве рабочего тела сложные вещества (водород, гелий), что делает эксплуатацию агрегата опасным;
  • Высокотемпературная стойкость стальных сплавов и их теплопроводность усложняет процесс изготовления двигателя. Значительные потери тепла в теплообменнике снижают эффективность агрегата, а применение специфических материалов делают изготовление двигателя дорогим;
  • Для регулировки и перехода двигателя с режима на режим надо применять специальные устройства управления.

Использование

Двигатель Стирлинга нашел свою нишу и активно применяется там, где габариты и всеядность важный критерий:

  • Двигатель Стирлинг-электрогенератор.

Механизм преобразования тепла в электрическую энергию. Часто встречаются изделия, используемые в качестве портативных туристических генераторов, установки по использованию солнечной энергии.

  • Двигатель, как насос (электрика).

Двигатель применяют для установки в контур отопительных систем, экономя на электрической энергии.

  • Двигатель, как насос (обогреватель).

В странах с тёплым климатом двигатель используют как обогреватель для помещений.

Двигатель Стирлинга на подводной лодке:


  • Двигатель, как насос (охладитель).

Практически все холодильники в своей конструкции применяют тепловые насосы, устанавливая двигатель Стирлинга, экономятся ресурсы.

  • Двигатель, как насос, создающий сверхнизкие степени нагрева.

Устройство применяют в качестве холодильника. Для этого процесс запускают в обратную сторону. Агрегаты сжижают газ, охлаждают измерительные элементы в точных механизмах.

  • Двигатель для подводной техники.

Подводные корабли Швеции и Японии работают благодаря двигателю.

Двигатель Стирлинга в качестве солнечной установки:


  • Двигатель, как аккумулятор энергии.

Топливо в таких агрегатах, расплавы соли, двигатель применяют, как источник энергии. Мотор по запасу энергии опережает химические элементы.

  • Солнечный двигатель.

Преобразуют энергию солнца в электричество. Вещество в данном случае, водород или гелий. Двигатель ставится в фокусе максимальной концентрации энергии солнца, созданного при помощи параболической антенны.

Цикл Стирлинга считается непременной принадлежностью именно двигателя Стирлинга. В то же время, детальное изучение принципов работы множества созданных на сегодняшний день конструкций, показывает, что значительная часть из них имеет рабочий цикл, отличный от цикла Стирлинга. Например, альфа-стирлинг с поршнями разного диаметра имеет цикл, более похожий на цикл Эрикссона. Бета- и гамма-конфигурации, имеющие достаточно большой диаметр штока у поршня-вытеснителя, также занимают некое промежуточное положение между циклами Стирлинга и Эрикссона.

При движении вытеснителя в бета-конфигурации изменение состояния рабочего тела происходит не по изохоре, а по наклонной линии, промежуточной между изохорой и изобарой. При некотором отношении диаметра штока к общему диаметру вытеснителя можно получить изобару (это отношение зависит от рабочих температур). В этом случае поршень, который ранее был рабочим, играет лишь вспомогательную роль, а настоящим рабочим становится шток вытеснителя. Удельная мощность такого двигателя оказывается примерно в 2 раза большей, чем в привычных стирлингах, ниже потери на трение, т. к. давление на поршень более равномерно. Схожая картина в альфа-стирлингах с разным диаметром поршней. Двигатель с промежуточной диаграммой может иметь нагрузку, равномерно распределённую между поршнями, т. е. между рабочим поршнем и штоком вытеснителя.

Важным преимуществом работы двигателя по циклу Эрикссона или близкому к нему является то, что изохора заменена на изобару или близкий к ней процесс. При расширении рабочего тела по изобаре не происходит никаких изменений давления, никакого теплообмена, кроме передачи тепла от рекуператора рабочему телу. И этот нагрев тут же совершает полезную работу При изобарном сжатии происходит отдача тепла рекуператору.
В цикле Стирлинга при нагреве или охлаждении рабочего тела по изохоре происходят потери тепла, связанные с изотермическими процессами в нагревателе и охладителе.

Конфигурация

Инженеры подразделяют двигатели Стирлинга на три различных типа:

  • Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

  • Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.
  • Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Также существуют разновидности двигателя Стирлинга не попадающие под вышеуказанные три классических типа:

  • Роторный двигатель Стирлинга - решены проблемы герметичности (патент Мухина на герметичный ввод вращения (ГВВ), серебряная медаль на международной выставке в Брюсселе «Эврика-96») и громоздкости (нет кривошипно-шатунного механизма, т.к. двигатель роторный) .

Недостатки

  • Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
  • Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.
  • Тепло не подводится к рабочему телу непосредственно , а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
  • Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

  • «Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
  • Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
  • Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
  • Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
  • Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
  • Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Применение

Двигатель Стирлинга с линейным генератором переменного тока

Двигатель Стирлинга применим в случаях, когда необходим компактный преобразователь тепловой энергии, простой по устройству, либо когда эффективность других тепловых двигателей оказывается ниже: например, если разницы температур недостаточно для работы паровой или газовой турбины.

Термоакустика – раздел физики о взаимном преобразовании тепловой и акустической энергии. Он образовался на стыке термодинамики и акустики. Отсюда такое название. Наука эта очень молодая. Как самостоятельная дисциплина она возникла в конце 70-х годов прошлого века, когда швейцарец Никалаус Ротт закончил работу над математическими основами линейной термоакустики. И всё же она возникла не на пустом месте. Её возникновению предществовали открытия интересных эффектов, которые мы просто обязаны рассмотреть.

С ЧЕГО ЭТО НАЧИНАЛОСЬ
Термоакустика имеет длинную историю, которая берёт своё начало более двух веков назад.

Первые официальные записи о колебаниях, порождаемых теплом, сделаны Хиггинсом в 1777 г. Он экспериментировал с открытой стеклянной трубкой, в которой акустические колебания возбуждались с помощью водородной горелки, расположенной определённым образом. Этот опыт вошёл в историю, как «поющее пламя Хиггинса».

Рисунок 1. Поющее пламя Хиггинса

Однако, современным физикам более известен другой эксперимент, получивший название «трубка Рийке». В процессе своих опытов Рийке создал новый музыкальный инструмент из органной трубки. Он заменил водородное пламя Хиггинса на подогреваемый проволочный экран и экспериментально показал, что самый сильный звук рождается в том случае, когда экран расположен на расстоянии четверти трубки от её нижнего конца. Колебания прекращались, если накрыть верхний конец трубки. Это доказывало, что для получения звука необходима продольная конвективная тяга. Работы Хиггинса и Рийке позже послужили основой для зарождения науки о горении, которая сегодня применяется везде, где используется это явление от

Рисунок 2. Трубка Рийке.

горения пороховых шашек до ракетных двигателей. Явлениям, протекающим в трубке Рийке посвящены тысячи диссертаций во всём мире, но интерес к этому устройству не ослабевает до сих пор.

В 1850 г. Сондхаусс обратился к странному явлению, которое наблюдают в своей работе стеклодувы. Когда шарообразное утолщение из горячего стекла гонит воздух в холодный конец трубки стеклодува, генерируется чистый звук. Анализируя явление, Сондхаусс обнаружил, что звук генерируется, если нагревать шарообразное утолщение на конце трубки. При этом звук изменяется с изменением длины трубки. В отличие от трубки Рийке трубка Сондхаусса не зависела от конвективной тяги.

Рисунок 3. Трубка Сондхаусса.

Похожий эксперимент позже осуществил Таконис. В отличие от Сондхаусса он не подогревал конец трубки, а охлаждал его криогенной жидкостью. Это доказывало, что для генерации звука важен не подогрев, а перепад температур.
Первый качественный анализ колебаний, вызванных теплом, был дан в 1887 г. Лордом Рэлеем. Сформулированное Рэлеем объяснение перечисленных выше явлений сегодня известно термоакустикам как принцип Рэлея. Он звучит примерно так: «Если газу передать тепло в момент наибольшего сжатия или отобрать тепло в момент наибольшего разряжения, то это стимулирует колебания. » Несмотря на свою простоту, эта формулировка полностью описывает прямой термоакустический эффект, то есть преобразование тепловой энергии в энергию звука.

Вихревой эффект

Вихревой эффект (эффект Ранка-Хилша, англ. Ranque-Hilsch Effect ) - эффект разделения газа или жидкости при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре - закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. Впервые эффект открыт французским инженером Жозефом Ранком в конце 20-х годов при измерении температуры в промышленном циклоне. В конце 1931 г Ж.Ранк подает заявку на изобретенное устройство, названное им «Вихревой трубой» (в литературе встречается как труба Ранке). Получить патент удается только в 1934 году в Америке (Патент США № 1952281). В настоящее время реализован ряд аппаратов, в которых используется вихревой эффект, вихревых аппаратов. Это «вихревые камеры» для химического разделения веществ под действием центробежных сил и «вихревые трубы», используемые как источник холода.

С 1960-х годов вихревое движение является темой множества научных исследований. Регулярно проводятся специализированные конференции по вихревому эффекту, например, в Самарском аэрокосмическом университете.

Существуют и применяются вихревые теплогенераторы и микрокондиционеры.

В этом мире есть вещи гениальные, непостижимые и совершенно нереальные. Настолько нереальные, что кажутся артефактами из некой параллельной Вселенной. К числу таких артефактов наряду с двигателем Стирлинга, вакуумной радиолампой и чёрным квадратом Малевича в полной мере относится т.н. "турбина Тесла".
Вообще говоря отличительная черта всех подобных вещей - абсолютная простота. Не упрощённость, а именно простота. То есть как в творениях Микеланджело - отсутствует всё лишнее, какие-то технические или смысловые "подпорки", чистое сознание, воплощённое "в железе" или выплеснутое на холст. И при всём при этом абсолютная нетиражность. Чёрный Квадрат - это своего рода "орт" искусства. Второго такого написанного другим художником быть не может.

Всё это в полной мере относится и к турбине Тесла. Конструктивно она представляет собой несколько (10-15) тонких дисков, укреплённых на оси турбины на небольшом расстоянии друг от друга и помещённые в кожух, напоминающий милицейский свисток.

Не стоит и объяснять, что дисковый ротор намного более технологичен и надёжен, чем даже "колесо Лаваля", я уж молчу о роторах обычных турбин. Это первое достоинство системы. Второе состоит в том, что в отличие от других типов турбин, где для ламинаризации течения рабочего тела необходимо принимать специальные меры. В турбине Тесла рабочее тело (которым может быть воздух, пар или даже жидкость) течёт строго ламинарно. Поэтому потери на газодинамическое трение в ней сведены к нулю: КПД турбины составляет 95%.

Правда следует иметь в виду, что КПД турбины и КПД термодинамического цикла - несколько разные вещи. КПД турбины можно охарактеризовать, как отношение энергии, преобразуемой в механическую энергию на валу ротора турбины к энергии рабочего цикла (то есть разнице начальной и конечной энергий рабочего тела). Так КПД современных паровых турбин так же весьма высок - 95-98%, однако КПД термодинамического цикла в силу ряда ограничений не превышает 40-50%.

Принцип действия турбины основан на том, что рабочее тело (допустим - газ), закручиваясь в кожухе, за счёт трения "увлекает" за собой ротор. При этом отдавая часть энергии ротору, газ замедляется, и благодаря возникающей при взаимодействии с ротором кориолисовой силе, подобно чаинкам в чае "скатывается" к оси ротора, где имеются специальные отверстия, через которые осуществляется отвод "отработанного" рабочего тела.
Турбина Тесла, как и турбина Лаваля преобразует кинетическую энергию рабочего тела. То есть превращение потенциальной энергии (например сжатого воздуха или перегретого пара) в кинетическую необходимо произвести до подачи на ротор турбины с помощью сопла. Однако турбина Лаваля, имея в целом достаточно высокий КПД, оказывалась крайне неэффективной на низких оборотах, что заставляло конструировать редукторы, размеры и масса которых многократно превышали размеры и массы самой турбины. Фундаментальным отличием турбины Тесла является тот факт, что она вполне эффективно работает в широком диапазоне частот вращения, что позволяет соединять её вал с генератором непосредственно. Кроме того, турбина Тесла легко поддаётся реверсированию.

Интересно, что сам Никола Тесла позиционировал своё изобретение, как способ высокоэффективного использования геотермальной энергии, которую он считал энергией будущего. Кроме того турбина без каких-либо переделок может превратиться в высокоэффективный вакуумный насос - достаточно раскрутить её вал от другой турбины или электродвигателя.

Технологичность турбины Тесла позволяет изготавливать её варианты буквально из чего угодно: дисковый ротор можно сделать из старых компакт-дисков или "блинов" от вышедшего из строя компьютерного "винчестера". При этом мощность такого двигателя не смотря на "игрушечные" материалы и габариты получается весьма внушительной. Кстати о габаритах: двигатель мощностью 110 л.с. был не больше системного блока нынешнего персонального компьютера.

Устройства на эффекте Ранка

Эффект Ранка с самого начала привлекал изобретателей кажущейся простотой технической реализации - в самом деле, простейшая реализация вихревой трубы представляет собой кусок трубы самый обычной, куда с одной стороны внутрь тангенциально подаётся исходный поток, а на противополжном торце установлена кольцевая диафрагма, и из её внутреннего отверстия выходит охлаждённая часть потока, а из щели между внешним краем диафрагмы и внутренней поверхностью трубы - его горячая часть. Однако на самом деле не всё так просто - добиться эффективного разделения удаётся далеко не всегда, да и КПД таких установок обычно заметно уступает широко распространённым компрессорным тепловым насосам. Кроме того, обычно параметры установки на эффекте Ранка рассчитаны для конкретной мощности, определяемой скоростью и расходом вещества исходного потока, и когда параметры входного потока отклоняются от оптимальных значений, КПД вихревой трубы существенно ухудшается. Тем не менее следует заметить, что возможности некоторых установок на эффекте Ранка внушают уважение - например, рекордное охлаждение, которого удалось достигнуть на одной ступени, составляет более 200°С!

Впрочем, с учётом нашего климата, гораздо больший интерес представляет использование эффекта Ранка для обогрева, да при этом ещё хотелось бы и не выходить за рамки «подручных средств».

Суть эффекта Ранка

При движении потока газа или жидкости по плавно поворачивающей поверхности трубы у её внешней стенки образуется область повышенного давления и температуры, а у внутренней (либо в центре полости, если газ закручен по поверхности цилиндрического сосуда) - область пониженной температуры и давления. Это достаточно хорошо известное явление называется эффектом Ранка по имени открывшего его в 1931 г. французского инженера Жозефа Ранка (G.J.Ranque, иногда пишут «Ранке»), или эффектом Ранка-Хилша (немец Robert Hilsh продолжил исследование этого эффекта во второй половине 1940-х годов и улучшил эффективность вихревой трубы Ранка). Конструкции, использующие эффект Ранка, представляют собой разновидность теплового насоса, энергия для функционирования которого берётся от нагнетателя, создающего поток рабочего тела на входе трубы.

Парадоксальность эффекта Ранка заключается в том, что центробежные силы во вращающемся потоке направлены наружу. Как известно, более тёплые слои газа или жидкости имеют меньшую плотность и должны подниматься вверх, а в случае цетробежных сил - стремиться к центру, более холодные имеют большую плотность и, соответственно, должны стремиться к периферии. Между тем при большой скорости вращающегося потока всё происходит с точностью до наоборот!

Эффект Ранка проявляется как для потока газа, так и для потока жидкости, которая, как известно, является практически несжимаемой и потому фактор адиабатического сжатия / расширения к ней неприменим. Тем не менее, в случае жидкости эффект Ранка обычно выражен значительно слабее - возможно, именно по этой причине, да и очень малая длина свободного пробега частиц затрудняет его проявление. Но это верно, если оставаться в рамках традиционной молекулярно-кинетической теории, а у эффекта могут быть и совсем другие причины.

На мой взгляд, на данный момент наиболее полное и достоверное научное описание эффекта Ранка представлено в статье А.Ф.Гуцола (в формате pdf). Как ни удивительно, в своей основе его выводы о сути явления совпадают с полученными нами «на пальцах». К сожалению, он оставляет без внимания первый фактор (адиабатическое сжатие газа у внешнего радиуса и расширение у внутреннего), который, на мой взгляд, весьма существенен при использовании сжимаемых газов, правда, действует он только внутри устройства. А второй фактор А.Ф.Гуцол называет «разделением быстрых и медленных микрообъёмов».

- тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания...

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью - увеличение по клику.

Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Перечислим основные особенности работы двигателя:

1. В двигателе Стирлинга происходит преобразование теп­ловой энергии в механическую посредством сжатия постоянно­го количества рабочего тела при низкой температуре и после­дующего (после периода нагрева) его расширения при высо­кой температуре. Поскольку работа, затрачиваемая поршнем на сжатие рабочего тела, меньше работы, которую поршень со­вершает при расширении рабочего тела, двигатель вырабаты­вает полезную механическую энергию.

2. В принципе при наличии регенерации необходимо только подводить тепло, чтобы не допускать охлаждения рабочего тела при его расширении, и отводить тепло, выделяющееся при его сжатии.

3. Необходимое изменение температуры рабочего тела обес­печивается наличием разделенных холодной и горячей полос­тей, по соединительным каналам между которыми под дей­ствием поршней перемещается рабочее тело.

4. Изменения объема в этих двух полостях должны не сов­падать по фазе, а получающиеся в результате циклические из­менения суммарного объема в свою очередь не должны совпа­дать по фазе с циклическим изменением давления. Это - усло­вие получения механической энергии на валу двигателя.

Таким образом, принцип Стирлинга - это попеременный нагрев и охлаждение заключенного в изолированном простран­стве рабочего тела. Чтобы наглядно представить, как этот про­стой принцип реализуется на практике, рассмотрим сначала элементарную систему поршень - цилиндр, в которой рабочее тело изолировано от внешней среды жестким поршнем, меха­нически соединенным с кривошипом (рис. 1.4).

По мере подвода тепла к головке цилиндра давление рабо­чего тела возрастает, и поршень начинает перемещаться впра­во под действием расширяющегося рабочего тела (рис. 1.5).

При расширении рабочего тела давление в цилиндре па­дает. Для компенсации охлаждения рабочего тела при его рас­ширении подвод тепла продолжается, благодаря чему процесс

Протекает при постоянной температуре. Когда поршень дости­гает своего крайнего правого положения (нижней мертвой точки), подвод тепла прекращается и начинается охлаждение головки цилиндра с помощью какого-либо внешнего источника (рис. 1.6).

В процессе охлаждения давление продолжает падать. Затем поршень начинает перемещаться влево, сжимая газ. Процесс

Рис. 1.8. Завершение рабочего цикла.

Охлаждения при этом продолжается, чтобы компенсировать на­грев при сжатии, так что и сжатие протекает при постоянной температуре (рис. 1.7).

Когда поршень достигает своего крайнего левого положения (верхней мертвой точки) охлаждающее устройство заменяется источником тепла (рис. 1.8).

Эту последовательность можно изобразить на диаграммах термодинамического состояния (рис. 1.9).

Поскольку процесс расширения с нагревом протекает при более высоком среднем давлении, чем процесс сжатия с охла­ждением, двигатель совершает полезную работу Однако такой метод подвода и отвода тепла громоздок и непрактичен, так как теплоемкость материалов, из которых изготавливается го­ловка цилиндра, слишком велика для реализации требуемых
быстрых изменений температуры. Тем не менее основная кон­цепция попеременного нагрева и охлаждения изолированного рабочего тела при различных давлениях для получения меха­нической работы изложена здесь вполне точно.

Объем А

Возникает проблема воплощения этой концепции на практи­ке. Очевидным решением было бы поддерживать на одном тор­це цилиндра постоянную высокую температуру, а на другом - постоянную низкую. Однако в этом случае невозможно было бы использовать систему поршень - цилиндр, упомянутую при описании рабочего цикла, поскольку рабочее те­ло одновременно и получало, и отдава­ло бы тепло в сменяющих друг друга фазах процесса. Роберт Стерлинг пре­одолел эту трудность, введя вытеснн­тельный поршень, или вытеснитель, расположенный последовательно с пер­воначальным поршнем, получившим

Теперь название «рабочий поршень». Вытесннтельный поршень предназначен для перемещения рабочего тела между локально расположенными горячей и холодной полостями (рис. 1.10).

Вытесннтельный поршень свободно размещен в цилиндре, так что рабочее тело может обтекать его со всех сторон, как показано на рис. 1.11, где действие вытеснительного поршня иллюстрируется безотносительно к рабочему поршню.

При движении вытеснителя вверх, к горячему концу ци­линдра, нагретое рабочее тело поступает в холодную полость через кольцевой зазор у боковых стенок вытеснительного
поршня. При этом давление рабочего тела вследствие охлажде­ния понижается. В цилиндре отсутствуют клапаны, поэтому, если не принимать во внимание небольшого, практически пре - небрежимого падения давления в кольцевом зазоре вокруг вы - теснительного поршня, давление во всех зонах цилиндра будет одинаковым. При движении к нижней мертвой точке вытесни - тельный поршень заставляет рабочее тело перемещаться через холодную полость и кольцевой зазор вокруг боковой поверхно­сти поршня в горячую полость для подогрева. Поскольку при

Движении вытеснительного поршня давление у обоих его тор - цев всегда одинаково, на это движение работа не затрачива­ется.

Движение вытеснительного и рабочего поршней не совпа­дает по фазе. Объяснение этого с позиций термодинамики бу­дет дано ниже. Однако уже сейчас нетрудно понять, что если все рабочее тело в какой-то фазе цикла должно быть в горя­чей полости, а в другой фазе цикла - в холодной, то оба порш­ня не могут находиться в одной фазе. Чтобы получить такое не совпадающее по фазе движение поршней, необходим. меха­низм привода, отличный от общепринятого. Пример механизма, использованного самим Стирлингом, показан на рис. 1.12.

Необходим еще один элемент, чтобы получить двигатель Стирлинга в том виде, в каком он известен сейчас. Это реге­нератор, или «экономайзер», как его первоначально назвал Стирлинг. Когда вытеснительный поршень перемещает расши­ряющееся рабочее тело в холодную полость (рис. 1.11), оно должно пройти через горячую полость где из-за продолжаю­
щегося нагрева получает избыточное тепло, которое необходи­мо отвести в холодильник. После того как рабочее тело сжато, оно перемещается в горячую полость через холодную, дополни­тельно охлаждаясь. Следовательно, рабочее тело поступает в горячую полость более холодным, чем требуется, а в холод­ную - более горячим.

Если в кольцевом зазоре вокруг вытеснительного поршня, по которому перетекает рабочее тело, установить сетку из стальной проволоки, то рабочее тело, проходя через этот зазор из горячей полости в холодную, будет иметь бо­лее высокую температуру, чем сетка, и, следовательно, будет отдавать теп­ло этой сетке. В этом случае сетка действует как предварительный холо­дильник, снижая термическую нагруз­ку основного холодильника. После процесса сжатия рабочее тело будет перетекать в горячую полость, нагре­ваясь при прохождении через сетку, т. е. будет вновь получать тепло, ра­нее отданное сетке. Теперь регенера­тор действует как предварительный нагреватель, уменьшая требуемое ко­личество подводимой энергии. Описанная система в целом по­казана на рис. 1.13.

Хотя схема, показанная на рис. 1.13, находит практическое применение во многих двигателях, проблема быстрой передачи энергии остается нерешенной, поскольку необходимо еще пре­одолеть тепловую инерцию стенок цилиндра. При проведении работ по усовершенствованию двигателя Стирлинга фирмой «Филипс» были применены трубчатые теплообменники для на­гревателя и холодильника, и, хотя при этом потребовалось уплот­нить вытесннтельный поршень, основная цель была достигнута. Полный рабочий цикл теперь можно описать с помощью рис. 1.14. На рис. 1.14 легко различаются составляющие процессы рабо­чего цикла, изображенного на диаграмме давление - объем (рис. 1.9, а).

На рис. 1 14, а рабочий поршень находится в крайнем ниж­нем положении, вытеснитель - в крайнем верхнем положении, и все рабочее тело заключено в холодной полости. Затем под действием внешних сил рабочий поршень начинает переме­щаться вверх, сжимая рабочее тело в холодной полости, при­чем температура рабочего тела поддерживается на минималь­ном уровне. В точке 2 (рис. 1.15) вытесннтельный поршень все еще находится в крайнем верхнем положении, рабочий
поршень заканчивает свое движение вверх, и процесс сжатия за­вершается (рис. 1.14,6). Рабочий поршень остается в своей верхней мертвой точке, а вытеснительный поршень начинает движение вниз, перемещая рабочее тело в систему холодиль­ник - регенератор - нагреватель и далее в горячую полость. Объем рабочего тела в этом процессе остается постоянным, а давление возрастает. В процессе между точками 2 и 3 рабоче­му телу передается тепло от регенератора. Точка 3 соответ­ствует пребыванию всего рабочего тела в горячей полости, при

Этом рабочий поршень все еще остается в своей верхней мерт­вой точке. Следует отметить, что вытеснительный поршень в точке 3 еще не достиг своего крайнего нижнего положения.

Теперь рабочее тело, находясь в горячей полости, получает тепло от трубчатого нагревателя и расширяется. Воздействуя на вытеснительный и рабочий поршни, расширяющееся рабочее тело заставляет их совместно перемещаться вниз, пока они не займут свое крайнее нижнее положение. В процессе между точ­ками 3 и 4 совершается положительная работа. Точка 4 соот­ветствует пребыванию обоих поршней в своих нижних мертвых точках. Рабочий поршень продолжает оставаться в этом поло­жении, а вытеснительный поршень перемещается вверх, вытес­няя расширившееся рабочее тело через систему нагреватель - регенератор - холодильник в холодную полость. При этом ра­бочее тело отдает остаток своего тепла регенератору. В процес­се 4 - 1 объем остается неизменным, а давление падает. Так осуществляется цикл Стирлинга в том виде, как он показан на двух диаграммах состояния (рис. 1.15).

Сравнивая движение поршней относительно друг друга в последовательных процессах (рис. 1.14), легко заметить, что их движение на протяжении всего цикла не совпадает по фазе.

Для обеспечения протекания такого цикла в соответствии с его описанием, приведенным выше, необходимо прерывистое перемещение поршней. Этот вывод можно наглядно проиллю­стрировать диаграммой перемещений поршней (рис. 1.16).

Рис. 1.15. Термодинамические диаграммы состояния идеального цикла Стир­линга.

Горячая полость расширения определяется переменным объемом VE между головкой цилиндра и верхним торцем вы­теснительного поршня. Она об­разуется исключительно благо­даря перемещению вытесни­тельного поршня. Холодная по­лость сжатия определяется пе­ременным объемом Vc между нижним торцем вытеснитель­ного поршня и верхним тор­цем рабочего поршня. Объем нагревателя, холодильника, ре­генератора и примыкающих к ним патрубков является не­рабочим объемом и называет­ся объемом мертвого простран­ства (мертвым объемом) V D . Любой мертвый объем умень­шает мощность, вырабатывае­мую двигателем, и его необходимо сводить к минимуму, допу­скаемому конструктивными особенностями двигателя. Однако в некоторых условиях путем увеличения мертвого объема можно увеличить КПД двигателя.

Теперь следовало бы рассмотреть проблемы термодинами­ки, газодинамики и теплообмена, которые необходимо решить для реализации принципа Стирлинга. Не ппеодолены также
трудности, связанные с высокой сложностью механизма при­вода и необходимостью обеспечить достаточную балансировку двигателя.

На рис. 1.16 показана зависимость изменения объема от угла поворота кривошипа, при выполнении которой реализует­ся идеальный цикл Стирлинга. Основной функцией механизма привода является наиболее точное воспроизведение этой зави­симости. Однако полное удовлетворение требований термоди­намики возможно только при прерывистом движении поршней, а механическое устройство не в состоянии точно воспроизвести такое движение. Хотя в принципе и можно создать механизм, воспроизводящий закон изменения объема, близкий к идеаль­ному, при его проектировании необходимо учитывать и другие факторы, а именно: простоту конструкции, компактность, дина­мические факторы и возможность установки системы уплот­нения.

Чем больше в механизме привода движущихся частей, тем меньше, как правило, механический КПД; при этом преимуще­ства, обусловленные воспроизведением закона изменения объ­ема, близкого к идеальному, могут быть сведены на нет низ­ким общим КПД двигателя. Кроме того, большое число дета­лей приводит к повышению стоимости изготовления механизма привода, общей стоимости агрегата и затрат на эксплуатацию, а также к снижению надежности по сравнению с механизмами привода обычных двигателей внутреннего сгорания. Простран­ство, в которое должен «вписываться» двигатель Стирлинга, также может быть определяющим фактором, а это поставит конструктора перед выбором, что предпочесть: громоздкий ме­ханизм привода, обеспечивающий почти идеальный закон изме­нения объема, или более компактный механизм, но воспроизво­дящий закон изменения объема с меньшей точностью.

Динамические факторы, которые необходимо принимать во внимание при конструировании, можно разделить на две груп­пы: связанные с динамической нагруженностью и связанные с динамической балансировкой движущихся частей двигателя. Динамические нагрузки оказывают решающее влияние на оп­ределение основных размеров двигателя Стирлинга. Термоди­намический анализ работы двигателя предъявляет определен­ные требования к рабочему объему, длине шатуна и др., одна­ко количественно эти требования выражены безразмерными параметрами и, следовательно, не устанавливают каких-либо реальных размеров. Определение размеров этих компонентов основывается на последующих динамических расчетах, включа­ющих определение нагрузок на подшипники, величины изгиба­ющего момента на шатуне и т. п. Двигатель Стирлинга благо­даря используемому в нем замкнутому циклу по своей приро­
де является бесшумным, и если в нем предусмотреть свобод­ный от вибраций (а следовательно, динамически уравновешен­ный) механизм привода, то потенциальные возможности его практического применения существенно расширятся. Некото­рые механизмы привода, разработанные для двигателей Стир­линга, удовлетворяют этим требованиям.

И наконец, в двигателях Стирлинга большого литража воз­никает проблема уплотнений, отделяющих цилиндры двигате­ля от картера и изолирующих картер от избыточного давле­ния. Таким образом, мы перечислили основные факторы, влия­ющие на выбор механизма привода двигателя Стирлинга.

В двигателях Стирлинга чаще всего используются: криво - шипно-балансирный механизм, ромбический привод, косая шайба и кривошипно-шатунный механизм.

Первым в двигателе Стирлинга был использован криво - шипно-балапсирпый механизм привода (рис. 1.17), в котором балансир сочленяется посредством двух рычагов с рабочим и вытеснительным поршнями, а рабочий поршень приводится не­посредственно от коленчатого вала. При таком типе привода неизбежно избыточное давление в картере, и поэтому он при­годен только для небольших двигателей. Такой привод не обес­печивает также динамической балансировки одноцилиндрового двигателя.

Увеличение мощности двигателя Стирлинга в процессе его совершенствования привело к необходимости изолировать ци­линдры от картера, чтобы избежать избыточного давления в картере. Эту проблему решает установка ромбического приво­да (рис. 1.18), разработанного фирмой «Филипс» в 50-е годы. Преимуществом такого привода является также возможность динамической балансировки даже в случае одноцилиндрового двигателя. Основными его недостатками являются сложность ме­ханизма, поскольку он состоит из большого числа движущихся частей, трущихся по­верхностей и т. п., и наличие в механизме двух находящихся в зацеплении зубчатых колес.

Косая шайба (рис. 1.19) применяется главным образом в двигателях, предназна­ченных для установки на автомобилях, где решающим фактором является компакт­ность силового агрегата. Такой механизм динамически сбалансирован при определен­ном угле наклона шайбы. Он также позво­ляет легко изолировать цилиндры от кар­тера. Однако в случае установки двигателя на автомобиль возникает проблема надеж­ности уплотнений в условиях быстрой сме­ны большого количества циклов. Косая шайба позволяет также управлять мощно­стью двигателя изменением угла наклона шайбы, что ведет в свою очередь к изме­нению величины хода поршней двигателя. В этом случае двигатель динамически сба­лансирован только при одном значении угла наклона шайбы.

Кривошипно-шатунный механизм (рис. 1.20) в течение мно­гих лет используется в двигателях внутреннего сгорания. Он исключительно надежен, и к настоящему времени накоплен большой опыт его эксплуатации. Этот механизм широко при­меняется в двигателях Стирлинга двойного действия как с крейцкопфом, так и без него. Преимуществами механизма явля­ются его надежность и простота изготовления, однако динами­ческая балансировка двигателя с таким механизмом привода практически недостижима.

Кривошипно-шатунный механизм, как мы могли убедиться, не является простым решением проблемы привода в случае, когда рабочий и вытеснительный поршни последовательно рас­положены в одном цилиндре. Однако такой механизм широко

Применяют в компоновочной модификации двигателя Стирлин­га со сдвоенными цилиндрами. Первоначально в такой модифи­кации использовали рабочий и вытесннтельный поршни, распо­ложенные в двух цилиндрах, соединенных коротким патрубком (рис. 1.21).

В XIX в. такой двигатель был построен Хенричи и Робин­соном . В литературе по двигателям Стирлинга, начиная с (>0-х годов нашего века и позднее, этот вариант часто назы­вают гамма-конфигурацией. Дальнейшие усовершенствования

Двигателя со сдвоенными цилиндрами были предложены Рай - дером , что привело к существенному увеличению удельной мощности по сравнению с другими модификациями двигателя Стирлинга, созданными к тому времени. С этого времени дви­гатели со сдвоенными цилиндрами получили всеобщее призна­ние. В модификации Райдера применены два полностью уплот­ненных в цилиндрах поршня вместо системы поршень - вытес­нитель. Теплообменники типа «нагреватель - регенератор - холодильник» встроены между двумя цилиндрами, образуя со­единительный канал (рис. 1.22).

Такая компоновка расширила возможности создания раз­личных конфигурации двигателя, реализующих принцип Стир­линга; например, цилиндры могут располагаться один против другого горизонтально или вертикально, параллельно один другому, в форме буквы V (рис. 1.23) и по другим схемам.

Все двигатели, о которых говорилось выше, по своему об­щему принципу действия являются двигателями простого дей­ствия. Следует подчеркнуть, что это название относится к дви­гателю, а не к поршню, поскольку, несмотря на то что
вытеснительныи поршень может производить двойное действие, когда его верхняя и нижняя поверхности управляют перемеще­нием газа, двигатель в целом при этом все еще может опреде­ляться как двигатель простого действия. Термины «двигатель

Простого действия»» и «двигатель двойного действия» примени­тельно к двигателям Стирлинга используются для характери­стики двигателя в целом. Например, как показано ниже, не-

Сколько агрегатов простого действия можно объединить в дви­гатель двойного действия. Этот способ мы проиллюстрируем на примере расположения цилиндров, предложенного Райдером и называемого также компоновочной модификацией альфа (рис. 1.24).

Цикл простого действия обеспечивается совместным дей­ствием верхней поверхности одного поршня и нижней поверх-

Ности другого поршня в соседних цилиндрах. Рабочее тело цир­кулирует между этими двумя цилиндрами. Оно не перемещает­ся через всю систему - от первого цилиндра до четвертого. Таким образом, поршень в каждом цилиндре выполняет функ­ции как рабочего, так и вытеснительного поршня, и при этом

Каждый поршень одновременно участвует в двух рабочих циклах. Следовательно, в четырехцилиндровой компоновке (рис. 1.24) одновременно протекают четыре отдельных цикла:

Этот тип двигателя Стирлинга был первоначально предло­жен английским инженером Сименсом и независимо от него голландскими инженерами Рини и Ван-Вееном в период их работы в фирме «Филипс», где он был усовершенствован. Двигатель двойного действия особенно эффективен среди ■устройств, вырабатывающих механическую энергию, из-за своей высокой удельной мощности, получаемой благодаря тому, что при каждом обороте коленчатого вала в каждом цилиндре поршень совершает полный рабочий ход.

Сказанное означает, что в двигателе двойного действия пор­шень выполняет две функции (или имеет двойную функцию):

1) заполнение рабочим телом двух полостей переменного объема и вытеснение рабочего тела из этих полостей;

2) передачу усилия на выходной вал.

Двигатели Стирлинга двойного действия неизбежно должны быть многоцилиндровыми, поскольку для получения сдвинутых по фазе процессов расширения и сжатия (необходимость тако­го сдвига отмечалась ранее) требуется не менее трех порш­ней. На практике же применяются обычно не менее четырех поршней, соединенных с одним коленчатым валом, причем соседние поршни дей­ствуют совместно в паре, чем и до­стигается двойное действие. Меха­низмы привода двигателей двойного действия должны. выполнять упомя­нутые выше две функции. Наибо­лее подходящим для этого представ­ляется обычный многоопорный ко­ленчатый вал рядного двигателя

Рис. 1.26. Соосная конфигурация ]РИС" L25)- Этот тип механизма осо - двигателя двойного действия. бенно подходит для крупногабарит­ных силовых агрегатов.

Лучшую компактность обеспечивает расположение ци­линдров в квадрате, так называемое соосное расположение (рис. 1.26), которое позволяет не только использовать общую систему сгорания, но и применять различные типы механизмов привода. Большинство пригодных для таких двигателей типов механизмов привода представляет собой модификации криво - шипно-шатунного механизма, однако фирмы «Филипс», «Дже­нерал моторе» и «Форд» потратили значительные усилия на со­вершенствование механизма с косой шайбой. Оптимальная кон­струкция привода этого типа обеспечивает механический КПД. превышающий 90 %.

Конфигурации двигателя Стирлинга в сочетании с различ­ными механизмами привода показаны на рис. 1.27. Разумеется, основанием для выбора того или иного механизма привода яв­ляется не только его компактность, но и другие факторы. Эти факторы подробно рассмотрены в разд. 2.5.

Во всех до сих пор рассмотренных двигателях использова­лись механизмы привода, в которых поршни жестко соединены друг с другом с помощью различных кинематических звеньев, а эти звенья в свою очередь жестко связаны с выходным ва­лом, служащим для передачи механической энергии от двига­теля. Двигатель Стирлинга может работать и без механической
. ииHi между поршнями. В этом случае рабочий и вытеснитель - iii. iii поршни называются свободными поршнями. Эта концеп­Ции может быть использована не только в двигателях Стар­инна, однако только применительно к таким двигателям ее п. чоп. успешно реализовать. Впервые ее воплотил в реально

I "m I Ч Mi.............. и.Im приводи, применяемые в двигателях Стирлинга.

||||||||"||||||ми<| ни rviniuil; t> ромбический; в - дезаксиалышй крнвошипно-шатунный; | . inn nil iii. itiiiiuV, l кршшшшшо-кулисный; e- крнвошипно-балансирный (механизм г. . .1
связанных с поршнями. Шток вытеснительного поршня - по­лый, открытый со стороны своего нижнего торца, так что ра­бочее тело, находящееся внутри вытеснительного поршня, по­стоянно сообщается с рабочим телом в так называемой буфер­ной полости, где все время поддерживается постоянное давле­ние. Эта полость служит газовой пружиной и, как будет пока­зано ниже, выполняет функцию, аналогичную функции коленча­того вала в обычном двигателе Стирлинга.

Положение вытеснительного и рабочего поршней в начальный момент рабочего цикла показано на рис. 1.29, а весь цикл последо­вательно показан на рис. 1.30- 1.32. В начальном положении давление и температура рабоче­го тела во всем агрегате одина­ковы, причем давление равно его величине в буферной полости рв По мере передачи энергии рабо­чему телу в расширительной по­лости от трубок нагревателя тем­пература рабочего тела возрас­тает, что влечет за собой воз­растание давления до величины Pi (состояние 1). Это в свою оче­редь заставляет вытеснительный и рабочий поршни начать свое движение вниз.

Чтобы двигатель развивал полезную мощность, необходимо обеспечить сдвиг по фазе движений обоих возвратно-поступа­тельных элементов. Поэтому вытеснительный поршень имеет меньшую массу, чем рабочий. Воздействие рабочего тела на рабочий и вытеснительный поршни приблизительно одинаково, однако из-за меньшей массы вытеснительный поршень движет­ся с большим ускорением. Благодаря этому рабочее тело вы­тесняется из полости сжатия и по соединительному каналу (в котором может находиться регенератор) перемещается в го­рячую полость, вызывая дальнейшее повышение давления; со­ответственно увеличивается разность давлений относительно давления в буферной полости, создающая движущую силу. В конечном счете вытеснительный поршень вступает в контакт с рабочим поршнем (состояние 2), и дальнейшее движение вниз оба поршня совершают совместно.

Очевидно, что, как только оба поршня соединились, вытес - m мне рабочего газа из холодной полости сжатия прекращает - » я п соответственно прекращается поступление газа в расши - 1

Давление в буферной полости

I"m I "I I Id. iu/ki fiih - поршнем н начальный момент рабочего цикла свободно-

II |1|||||> lull и НИИ ИГ.1Я < "г1111."11111[ .1.

I | Г1 I I II мп II. 1 MI"HI lll. nl III) МП и. Л буферная полость.

1>и It - Ц. м Hi Пи 1"и Ii . | ■ I Mi I момента давление в двигателе на­Чиним н.| I . Mi . In I . I | I . Ii - Iii Ii Pcini Рабочего тела Однако это ми мчим in I i mi" iiprni. iiii. ier давление в буферной полости, и

Рис. 1.32. Полный рабочий цикл свободнопоршневого двигателя Стирлинга. 1 - горячая полость; 2- холодная полость; 3 - буферная полость.

Сначала лишь замедляет направленное вниз движение возврат­но-поступательно движущихся элементов. Поскольку вытеснн­тельный поршень легче рабочего, он останавливается быстрее, отделяясь от рабочего поршня; при этом вновь начинает обра­зовываться полость сжатия. Рабочий поршень продолжает дви­гаться вниз и после остановки вытеснительного поршня (со­стояние 5), при этом рабочее тело начинает перетекать из рас - Ширшелмюи полости в полость сжатия, вызывая дальнейшее imi. hi" быстрое падение давления в рабочих полостях и соот - III-11-1 nyioni. ee увеличение направленной вверх силы, действую­Щем на поршни. #

Иы геенн гельный поршень теперь очень быстро перемещает - » » и in рмиою часть цилиндра, вытесняя дополнительное коли - 411 ню рабочего тела из расширительной полости в полость I /К, м и» Наконец, вытесннтельный поршень достигает своего конечного положения (состояние 6) и остается в этом положе­нии нее время, пока давление в буферной полости превышает ми. ieНпе рабочего тела. Тем временем рабочий поршень, дой - III in своего крайнего нижнего положения (состояние 7), начи - и. h i перемещаться вверх, сжимая рабочее тело, заключенное Mi I i верхней поверхностью рабочего поршня и нижней по - ||| pMnu"ii. ii) in, I гее нательного поршня. В процессе сжатия дав - II щи раоочею тела возрастает по сравнению с давлением в ||п piiiiiiПо. кнмп п в результате возникает сила, перемещаю - 1н, in miieeiini(.цапли поршень вниз. Изолированное в рабочем ним ме рабочее тело перетекает в полость расширения, сооб - IIIни ими мппе п. ному поршню дополнительное ускорение, под Lelii |пнем ыиорого он догоняет рабочий поршень (состоя - IIiii М| la им |>,|(нI"niii цикл повторяется.

IniiiiM ini|iii him, рабочий цикл сноболпоноршневого двигате - hi < шр ими I ночш полностью идентичен циклу двигателя, в I. пиром p. ioiiMim и ныкчииге. и.иын поршни механически свя - I. MII. I upuiioiiiiiiiiiuMMi xaiiiiImom обычного типа. Этот вывод не I пинком иео/китан Ун и. ям hil l, изучая ромбический привод, м 1.1 и .1 Ii И 1М. т привода, а один из студентов Била впервые построил птп пщощпп свободнопоршневой двигатель . Конфигурация ныитшпельпый поршень - рабочий поршень» в свободно - iiiipiiiiienoM двигателе, по существу, является колебательной си - iieMi. H масса - пружина, и эта система настраивается на ра­ню г резонансной частотой, которая и является рабочей ча - I иной ишгателя. Однако необходимо заметить, что двигатель liii ia может работать и в таком режиме, при котором вытесни - h и. in, hi поршень будет совершать не простые гармонические (| пни-пичальные) колебания, вызываемые резонансом, а коле- оання. график которых имеет более прямоугольную форму. I". ном случае двигатель работает в так называемом режиме наш банг». Это название, может, и не строго научное, очень П. И.1ЯДИО отражает физическую природу работы двигателя.

Как и двигатель Стирлинга с обычным кривошипным при­ми юм, свободнопоршневой двигатель Стирлинга имеет различ­ные модификации, определяемые методами отбора мощности, ра ншваемой двигателем. Классификация этих модификаций
часто вызывает затруднения, так как, несмотря на название, в некоторых случаях свободным является только вытеснитель­ный поршень, а в других - движущийся цилиндр. Во всех слу­чаях рабочий цикл одинаков, однако динамика движущихся ча­стей различна, что связано с различными модификациями си­стемы масса - пружина. Попытаемся обойти эти затруднения двумя путями: во-первых, используя определение, которое про­сто констатирует, что свободнопоршне - вым двигателем Стирлинга называется двигатель, в котором отсутствует механи­ческая связь между элементами, совер­шающими возвратно-поступательное дви­жение; во-вторых, мы дадим краткое опи­сание трех существующих модификаций свободнопоршневых двигателей. Первые две - это двигатели Била, третья пред­ставляет собой двигатель со свободным вытеснителем, известный также как «ха­руэллская машина».

Если считать схему на рис. 1.28 и 1.29 основной формой двигателя Била, то главной проблемой такого двигателя ста­новится отбор и использование развивае­мой им мощности. Один метод представ­ляется особенно эффективным. Он заклю­чается в превращении рабочего поршня в постоянный магнит. Если разместить вокруг цилиндра обмотку, то при пере­мещении поршня внутри обмотки будет генерироваться электри­ческий ток. Фактически устройство в этом случае будет линей­ным генератором переменного тока (рис. 1.33), и его можно классифицировать как двигатель Била, буквально соответствую­щий названию свободнопоршневой.

Цилиндр двигателя также можно использовать в качестве элемента, передающего мощность, если сделать цилиндр исклю­чительно легким, а поршень - исключительно массивным. Поршень в этом случае будет действовать как опора, оставаясь практически неподвижным, а вытеснитель и цилиндр станут свободно перемещаться. Тогда цилиндр можно использовать в качестве постоянного магнита или в более привычном вариан­те присоединить к рычагу привода гидравлического насоса (рис. 1.34). Гидронасос в свою очередь можно использовать для привода гидромотора, что делает возможным установку свободнопоршневого двигателя на автомобиле . Однако, несмотря на множество возможных вариантов применения сво­боднопоршневых двигателей, наиболее перспективным являет-

I ii использование такого двигателя в качестве привода гидро - иагпга. 15 эгом направлении и проводятся многочисленные и 1 ппипмг разработки.

I im одним типом свободноноршневого двигателя является ирмолкхапический генератор (ТМГ). Этот вариант - один из

11 vi i. i ммм пени, | i. i ip. iiiiiT. niiiUN группой сотрудников Центра im iiiiMiiun >iic111 им и Харуэлле (Англия) под руководством Км Яроори. 1МГ, 1МИ харуэллском машине, как его иногда мл ii. iuaioi. иомлощена идея свободных поршней, однако рабочий inipiiiem, здесь заменен металлической диафрагмой, и упругость Mcia. i.ia усиливает действие газовой пружины. Схема этой мо - пп||||кац|ш показана на рис. 1.35.

Вместо поршня, перемещающегося в цилиндре вверх и вниз, в ТМГ установлена металлическая диафрагма, обычно изготав­ливаемая из нержавеющей стали. Эта диафрагма колеблется под действием изменяющегося давления рабочего тела. С диаф­рагмой жестко связан постоянный магнит, который колеблется в обмотке генератора, возбуждая электрический ток. Действие пружины, соединенной с вытеснителем, дает возможность си­стеме совершать резонансные колебания при частоте, равной

I-радиатор; 2 - охлаждающий змеевик; 3-вытеснитель; 4 - якорь; 5 - диафрагма; 6 - пружина; 7-горелка.

Частоте собственных колебаний системы. Частота колебаний легко регулируется подбором пружины и движущихся масс, что позволяет «подстроиться» под любую частоту в системе элек­троснабжения. Первоначально ТМГ предполагалось использо­вать в сочетании с источником тепла на радиоактивных изото­пах, но в настоящее время в таких двигателях используют про - пановые горелки (рис. 1.36).

Замкнутый металлический цилиндр, содержащий рабочее тело, нагревается со стороны днища пропановой горелкой и охлаждается с внешней стороны диафрагмы, расположенной в верхней части цилиндра, охлаждающим змеевиком. Рабочий цикл полностью идентичен циклу двигателя с рабочим и вы - теснительным поршнями, за исключением того, что здесь вытес­нитель приводится в действие пружиной, расположенной между ним и корпусом цилиндра. Диафрагма совершает колебания с амплитудой, не превышающей нескольких миллиметров, ноэто-
м (. 1я приведения в действие вытеснителя появилась необхо - I и мое I ь установки пружины.

Все спободнопоршневые устройства легко герметизируются, ииски. п.ку из них не выступают движущиеся детали, например 111.11 мы п т. п. Можно обойтись и без поршневых колец, сведя к минимуму зазоры между движущимися частями за счет жест­ких ишусков. Отпадает необходимость в трубчатых нагревате - 1я, мня они и могут быть использованы. Появляется возмож - Ц|» и. использования регенерирующего действия кольцевого за- шра никрм вытеснителя, так называемой щелевой регенера­ции lli ск. иапного следует, что свободнопоршневые устройства

I "ll! I I/ " м мп пии III II "I" III iii I. Illll

I i << |i»i "i-ttt ii

Im mihhiim in минным ap. iMi рпешкам сходны с двигателями 1 iup nun, I и 11 in ршшача. п.пых вариантах.

It и pi н[г(ч с район, I над устройствами, действующими по и и к. I < I пр. шпга, группа ученых из Харуэлла помимо ТМГ | I . I ipaiuiI ала новый тепловой двигатель «Флюидайн», относя - пиин я к классу двигателей Стирлинга с двумя поршнями (дви - I л 11Iям Райдера). Отличительной особенностью нового двига - имя является изменение рабочего объема вследствие пере - мг i не 11 п я столбов жидкости, а не поршней, изготовленных из nirpiux материалов (рис. 1.37).

< >i повой двигателя «Флюидайн» являются две U-образные |рпы (которые могут быть изготовлены из стекла), связанные

< фсмя рабочими полостями, соединенными между собой. Что - iii. i понять принцип работы этого двигателя, допустим, что жид - Mirib в нем невязкая. Допустим также, что U-образной трубы

< D не существует и что холодная полость герметизирована. Когда жидкость в U-образной трубе А - В (трубе вытесните - 1я) перемещается по часовой стрелке, левый столб жидкости поднимается, горячий газ перемещается в холодную полость, и явление рабочего газа понижается. Когда же столб жидкости
движется против часовой стрелки, холодный газ возвращается в горячую рабочую полость, и давление газа возрастает. Та­ким образом происходят циклические изменения объема и дав­ления, но полезной работы в этом процессе не производится. Однако при наличии выходной трубы появляется эффект изме­нения суммарного объема газа при его колебаниях и так же, как и в других двигателях Стирлинга, при наличии меньшего чем 180° сдвига по фазе колебаний вытеснителя относительно колебаний выходного элемента возникает термодинамический цикл, в котором вырабатывается полезная работа. Эта полез­ная работа передается на мениск С столба жидкости в выход­ной трубе. Колебания столба жидкости в выходной трубе яв­ляются вынужденными и вызываются разностью давлений в двух рабочих полостях - С и D, в то время как колебания столба жидкости в трубе вытеснителя являются свободными, поскольку на мениски А и В действует одно и то же давление. Нетрудно заметить, что в случае вязкой жидкости ее колеба­ния в трубе вытеснителя постепенно бы затухали. Причиной стабильной непрерывной работы двигателя «Флюидайн» явля­ется «перекачка» энергии вынужденных колебаний в выходной трубе к свободным колебаниям в трубе вытеснителя. Эта энер­гия компенсирует действие вязкого трения и поддерживает устойчивые колебания. Существует по меньшей мере три наи­более распространенных способа перекачки энергии:

1) с помощью разности давлений (рис. 1.38, а);

2) с помощью качающегося стержня (рис. 1.38,6);

3) с помощью реактивной струи (рис. 1.38,в).

В двигателе «Флюидайн», использующем способ перекачки энергии с помощью разности давлений, в отличие от схемы, рассмотренной выше, холодная полость выходной U-образной трубы совмещена с холодной полостью вытеснителя. Столбы жидкости, связанные с холодной и горячей полостями, разли­чаются по длине и, следовательно, имеют разные частоты соб­ственных колебаний. Рабочая частота всей системы заключена между частотами собственных колебаний горячего и холодного столбов жидкости. Возбуждающая сила, поддерживающая ста­бильные колебания, обусловлена разностью давлений на от­крытом торце выходной трубы и в рабочем газе.

Система с качающимся стержнем имеет пружину, с по­мощью которой поддерживается равновесие системы относи­тельно фиксированного шарнира. В процессе работы колебания в выходной трубе вызывают смещение центра тяжести систе­мы относительно его первоначального положения и поворот си­стемы относительно шарнира. При сжатии и растяжении пру­жины возникает восстанавливающая сила, действующая на си-

I"m". 1.38. Варианты двигателя «Флюидайн» с различными способами «пере­дки» энергии.

Ра. шость давлений; б качающийся стержень; в - реактивная струя; 1 - горячая теть; 2 - холодная полость; 3 -шарнир; 4- восстанавливающая пружина.

«■тему. Система совершает угловые перемещения, и, поскольку темпа» конструкция является жесткой, эти угловые перемеще­ния передаются столбам жидкости вытеснителя, где они ней­трализуют вязкие потери и поддерживают устойчивые коле­бания.

В двигателе «Флюидайн» с реактивной струей, так же как ii и двигателе, использующем разность давлений, имеется объ - (чиненная холодная полость. Холодная и выходная трубы со­единяются с горячей трубой у ее основания. Такое соединение обеспечивает эффект реактивной струи. При перемещении вниз
мениска в горячей полости часть жидкости отводится по на­правлению к холодной полости, что заставляет столб жидкости в холодной трубе перемещаться вверх, а при обратном ходе жидкость, направляющаяся в горячую трубу, заставляет поток из холодной трубы двигаться в вытеснителе с ускорением. Тем самым как при ходе вверх, так и при ходе вниз достигается

V //////>/ J

Рис. 1.39. Последовательные этапы «самозапуска» двигателя «Флюидайн».

А - начальное положение перед пуском; б - фаза расширения; в -первичное перерегули­рование: г-вторичное перерегулирование; д - фаза самовозбуждения.

Эффект реактивной с, труи. Однако реальные процессы, проте­кающие в этом гидравлическом соединении, исследованы еще недостаточно . Несмотря на это, модификация с реактив­ной струей является наиболее распространенной среди двига­телей «Флюидайн». Рабочий цикл двигателя с реактивной струей будет рассмотрен ниже.

Теперь же подробнее рассмотрим процессы, последователь­но протекающие при пуске двигателя «Флюидайн», поскольку одна из важнейших его особенностей - возможность «самоза­пуска».

Последовательность процессов при самозапуске показана на рис. 1.39. В положении предпускового равновесия уровни жидкости hu h 2 и h 3 определяются величинами статического давления в трубах. Если давление в рабочих полостях пере-
мсиного объема равно атмосферному, то все уровни одинако­вы (отметим, что уровни hi и h2 в этот момент всегда одина­ковы). При подведении тепловой энергии к правой трубе 1емпература рабочего тела возрастает, и оно расширяется. Дав - и"ние в рабочих полостях также возрастает, и из-за этого уров­ни жидкости в горячей и холодной трубах также начинают снижаться. Одновременно повышается уровень жидкости в вы­ходной трубе. Следует отметить, что все изменения уровня жид­кости весьма незначительны. Первичное расширение приводит к самозапуску устройства только по достижении критического шачения параметра Tss , зависящего от основных значений па­раметров, определяющих условия работы двигателя:

Эта формула основана на анализе явления, подробно рассмат­риваемого в разд. 1.6. Для большинства двигателей «Флюи - 1айн» Tss ~ 0,1.

По окончании фазы первичного расширения уровень жидко­сти в выходной трубе продолжает повышаться благодаря инер­ции движущейся жидкости. Уровень жидкости на горячей сто­роне продолжает падать, пока не будет достигнуто равнове­сие между жидкостью и рабочим телом. В этот момент уровень жидкости в трубе с холодной стороны выше, чем в трубе с горя­чей стороны. Это состояние, заключающееся в последователь­ности фаз, сменяющих друг друга при пуске двигателя, полу­чило название «первичное перерегулирование».

Как только под действием силы тяжести прекращается дви­жение жидкости вверх в выходной трубе, стабилизируется и ровень жидкости на горячей стороне; одновременно появляется тенденция к выравниванию уровней жидкости на горячей и хо­лодной сторонах. Следовательно, уровень жидкости в горячей трубе повышается, а в выходной понижается. Одновременно объем нагретого газа и его давление в рабочей полости умень­шаются из-за понижения температуры в этой полости, обуслов­ленного повышением уровня жидкости в горячей трубе и соответствующим уменьшением количества рабочего газа, под­вергающегося нагреву. Этим процессам способствует продолжаю - цееся движение вниз уровня жидкости в выходной трубе, вызы­вающее существенный динамический напор в гидравлическом соединении и дополнительное повышение уровня в трубе на го­рячей стороне. Действуя совместно, эти процессы вызывают возрастание уровня жидкости в трубе на горячей стороне до величины, превышающей уровни в других двух трубах. Это состояние называют вторичным перерегулированием. Оно приво­дит к дальнейшему возрастанию гравитационного потенциала между менисками.

В этот момент система находится в состоянии неустойчиво­го равновесия, и уровни жидкости начинают перемещаться в направлении к состоянию устойчивого равновесия. Уровень жид­кости на горячей стороне понижается, что позволяет большему количеству рабочего тела получать энергию от источника энер­гии. Рабочее тело расширяется, и процесс начинается вновь,

Однако теперь колебания становятся самовозбуждающимися и устойчивыми.

Рабочий цикл, описанный выше, имеет ту же физическую основу, что и цикл системы с двумя U-образными трубами.

«Флюидайн» может работать как в «мокром», так и в «су­хом» режиме. В первом случае существует контакт между вы­тесняемой жидкостью и рабочим телом. Во втором поверхности жидкости и рабочего газа разделены либо слоем «инертного» газа, либо механическим поплавком. Энергия в «Флюидайне» вырабатывается в виде колебаний жидкости в выходной трубе, и это особенно удобно для использования двигателя в качестве нагнетательного устройства. (История техники знает очень по­хожее устройство - насос Хэмфри с незамкнутым рабочим цик­лом.) Нагнетательный эффект достигается двумя основными способами, известными как прямое и косвенное нагнетание . В первом случае выходная, или резонансная, труба полностью преобразована в нагнетательную часть насоса, в то время как при косвенном нагнетании резонансная труба остается в перво­начальном виде, а нагнетательный эффект достигается с по­мощью отдельного канала, соединенного с холодной полостью (рис. 1.40, 1.41).

В случае косвенного нагнетания трудно осуществить «само - tanycK» и необходимы специальные дополнительные устройства, такие, как сливной тракт, встроенный параллельно выходной грубе и действующий как первичное нагнетающее устрой­ство .

Необходимо отметить также, что в «мокром» «Флюидайне» невозможно установить регенераторы с насадками, поскольку они не слишком эффективны в атмосфере тумана, образуемого

Парами жидкости. Отсутствием регенератора в «мокром» «Флюи - 1айне», вероятно, можно объяснить, почему такие двигатели имеют очень низкий КПД. Однако следует принять во внима­ние и то, что «мокрый» «Флюидайн» может работать только при температурах порядка 350 К (77°С) и разности температур при подводе и отводе тепла не более 25°С. При таких условиях КПД цикла Карно меньше 10 %.

15 двигателях Стирлинга, рассмотренных выше, использова­лось газообразное рабочее тело; даже в «мокром» «Флюидайне» рабочее тело в подавляющем большинстве случаев газообраз­ное. В настоящее время выдвигают предложения по использо­ванию рабочих тел с изменяющимся фазовым состоянием, на­пример таких, которые применяют в паровых машинах и па­ровых турбинах, однако пока нет сведений о том, что такие устройства успешно работают или по крайней мере разработа­ны. Английский инженер Мелоун еще в 30-е годы построил пшгатель возвратно-поступательного действия с замкнутым никлом, используя в качестве рабочего тела жидкость . Уокер предполагает, что двигатель Мелоуна в действитель­ности является двигателем Стирлинга, и единственная публи­кация Мелоуна как будто бы дает дополнительные основания

4 Зак. 839 для такого предположения. Однако более внимательный анализ и последовавшее детальное обсуждение этого вопроса в коллек­тиве исследователей, работающем в этой области под руковод­ством проф. Уитли в Калифорнийском университете (Сан-Ди­его, США), привели к выводу, что скорее всего двигатель Мелоуна работает по циклу, напоминающему цикл двигателя Стирлинга, однако имеющему существенные отличия. В то же время двигатель Мелоуна после небольшой модификации может в точности соответствовать двигателю Стирлинга. Тем не ме­нее остается невыясненным ряд вопросов относительно принци­пов работы двигателя Мелоуна даже в его первоначальном виде, поэтому мы считаем преждевременной попытку описания его рабочего цикла.

Рабочие циклы различных форм двигателя Стирлинга, пре­образующих тепловую энергию в механическую, уже нами описаны. Все эти двигатели имеют одни и те же основные принципы работы, однако есть и некоторые различия в конст руктивном воплощении, особенно там, где дело касается спо­собов использования вырабатываемой энергии. Схематические диаграммы и детальные описания, хотя и весьма полезные для облегчения понимания основных принципов, на которых осно­ваны эти двигатели, не всегда облегчают дело, когда надо определить, относится ли рассматриваемое устройство к двига­телям Стирлинга. В следующем разделе приводятся фотогра­фии и описания уже построенных двигателей Стирлинга раз­личных видов, что позволит устранить эти трудности.