Удобная транспортная развязка и большие. Конструирование транспортных развязок


Впервые о пересечении дорог на разных уровнях высказался Леонардо да Винчи еще в ХVI веке, но за последние полвека новых видов и типов представлено не было. Есть некоторые энтузиасты, такие как Семенов из Санкт-Петербурга, Петрук из Киева, Бутеляускас из Литвы, Ли Дзанг Хи из Кореи, кто находится в поиске оптимальных решений для транспортных узлов. Вовлекся в эту работу и ваш покорный слуга, считая себя одним из последователей да Винчи на ниве изобретательства и осознавая просчеты проектировщиков, выводящих на традиционных клеверах…

Основной целью моего проекта была разработка развязки, которая позволяла бы решить проблему преодоления пробок на автодорогах: чтобы просто и удобно было проезжать перекрестки, которые по аварийности перетягивают на себя треть всей . Причем развязки более технологичной и дешевой при возведении относительно строящихся ныне.

Поставил перед собой три трудно совместимые задачи:

  • езда на все четыре и более сторон;
  • езда без пересекающихся и переплетающихся потоков;
  • изменение любого направления движения без приостановки и значительного снижения скорости.

В результате длительной и кропотливой работы получил патент на изобретение № 2468138, действующий до 25.07.2031. Получилась единственная в мире система транспортных развязок модульного типа любой конфигурации и с множеством вариантов исполнения. А именно - турбинно-кольцевая транспортная развязка. Это не просто красивое словосочетание. Ее внедрение приведет к изменению определения самой транспортной развязки. В новой редакции, если добавить пару слов, оно должно звучать так: «Транспортная развязка - комплекс дорожных сооружений (мостов, туннелей, дорог), предназначенных для минимизации, а также полного устранения пересечений транспортных потоков и как следствие для увеличения пропускной способности дорог».

Недостатки турбинно-кольцевой развязки

  1. Средняя сложность конструкции.
  2. Резкие перепады высот и длинные уклоны (они нивелируются при новом строительстве, когда круговое движение на первом или втором уровнях).
  3. Непригодность для центральных городских перекрестков.

Сколько это стоит?

Теперь о самом главном для заказчика - о стоимости. В Москве развязки дешевле 5 млрд руб. не строят, есть даже две по 17 миллиардов. Мои предложения в министерства транспорта Челябинской области, Крыма, Севастополя, Белоруссии вызвали определенный интерес, но 1,5 млрд руб. для них оказались слишком большими вложениями.

Специфика бизнеса строительства дорог заключается в отсутствии конкуренции, так как средства выделяются из бюджетов государства или его субъектов монополистам с «устойчивыми долголетними связями» (так я аккуратно завуалировал откаты). Без соперничества не рождаются новые идеи, не формируется спрос на них. Ведь у финансирующих организаций отсутствует понятие новизны, а исполнителям менять что-либо всегда невыгодно.

На пути к намеченной цели, еще до патентования, почувствовал, что проект запросто можно видоизменить под различные дорожные ситуации. И вместо одного концепта создал аж девять! Для ознакомления с изобретением обращался в различные инстанции и организации. А именно: в Министерство транспорта РФ, Правительство Москвы и Санкт-Петербурга. Предлагал, к примеру, сделать МКАД безостановочным, организовать бессветофорное движение на Невском проспекте, не нарушая при этом исторический облик города с его обилием водной среды. Но никому до этого и дела нет.


В 2013 году Департамент транспорта Москвы провел анализ эффективности устройства турбинно-кольцевой развязки в сравнении с предложениями НИиПИ Генплана Москвы. В итоге, по их выводам, мои предложения оказались эффективнее, в частности, по сроку окупаемости - два года против шести. В чем уступил? В цене. Затраты на строительство рассчитаны в 2,772 млрд руб. против их чуть менее двух миллиардов. Так что получил отказ. В ответ на него предложил руководителю департамента Максиму Ликсутову построить мою развязку за 2 млрд руб., а если не хватит, то д обавить из своих карманов. В итоге Москва построила свою развязку… за 7 миллиардов! И школьнику начальных классов понятно, что четырехуровневое сочленение дорог с двумя туннелями, затрудняющими движение транспорта при строительстве, не может стоить дешевле трехуровневой.

Свое изделие оцениваю в 1,5 млрд руб. со сроком строительства в один год. Пусть это спорные цифры. Отказ от строительства пешеходных надземных или подземных переходов с остановками общественного транспорта на небольшом удалении от объекта, а также разворотных эстакад или туннелей позволит дать экономию около полумиллиарда рублей. По «клеверу» пешеходы ходить не могут, а турбинно-кольцевые это позволяют. Плюс пересадочный узел и возможность разворота непосредственно на эстакаде, а не перед ней.

Если у кого-то сомнения в цифрах, то как объяснить, что в Киеве у моста Патона построили развязку, на три четверти похожую на мою? Вы не поверите, но ее возвели всего за полгода и менее чем за 800 млн руб.! Просто это были европейские деньги и строилось все к чемпионату Европы по футболу 2012 года.


Прошлой осенью предоставилась возможность провести презентацию в «Автодоре». Им понравилось. Предложили получить заключения от авторитетных проектных организаций. Некоторые отделались смешными заочными отписками, МАДИ от сотрудничества и вовсе уклонился.

Как итог, развязок строится вроде бы много, но дорожная ситуация только ухудшается. Главной проблемой пробок является не постоянно увеличивающееся количество транспорта на автодорогах, в чем нас пытаются заверить, а проблемы стоящего транспорта. Ими я и занимаюсь уже более двух десятков лет. Кроме представленных девяти вариаций одной идеи позже появились еще пять, совершенно не похожих на представленные.

P.S.: Конкретное имя развязке можно дать по названию города, где она появится первой. Готов к адекватному общению в комментариях.

При проектировании развязок решаются многочисленные задачи геометрических построений, расчета элементов развязок, их увязки друг с другом и т.п. Практические руководства предлагают различные методики решения таких задач, и многие из них требуют громоздких итерационных расчетов, что не способствует поиску рациональных проектных решений.

Конструированию развязок предшествует функциональное проектирование с обоснованием оптимального варианта схемы и основных параметров по критериям безопасности движения, пропускной способности, технико-экономическим показателям. После функционального проектирования переходят непосредственно к конструированию. Именно на этом этапе мы и предлагаем читателю составить собственное мнение о возможностях методов интерактивной координатной геометрии в CREDO, для чего приводим различные примеры конструирования развязок.

Кольцевые развязки

Рассмотрим основные методы и возможности конструирования на примере несложной кольцевой развязки в одном уровне с простыми круговыми съездами, целесообразной при пяти и более сходящихся направлениях движения.

Все методы конструирования основаны на строгих алгоритмах координатной геометрии и представлены в матрице пиктограмм (рис. 1). Буква на пиктограмме представляет ведущий геометрический элемент данного метода, например: C - построение окружностей, L - линий, K - клотоид, O - объектов и т.п.

Последовательность построений при конструировании соответствует известной логике: оси дорог, оси полос, границы полос, кромки проезжей части и т.п. В координатной геометрии CREDO все геометрические элементы конструкций основаны на так называемых базовых элементах - прямых, окружностях, клотоидах, аналитические параметры которых либо определяются координатами точек, на которые опираются эти элементы, либо находятся в процессе интерактивных построений. Части базовых элементов, определяющие конструктивные элементы сооружения, выделяют прямыми отрезками или дугами и отображают на экране или на чертеже соответствующими типами линий, толщиной, цветом. Определенные таким образом элементы построений называют видимыми элементами. Части базовых элементов можно объединить в полилинии (трассы), отображаемые так же, как и видимые элементы. Совокупность трасс и видимых элементов с некоторой неграфической информацией (семантикой) объединяется в объект. Этих не вполне строгих сведений достаточно, чтобы начать конструирование, освоить которое можно только в процессе работы.

Начиная работу и приблизительно определившись с центром кольца, выбирают метод построения прямой линии (см. рис. 1), проводят ось первой из пересекающихся дорог и по подсказке уточняют дирекционный угол. Ось второй дороги проводят, выбрав метод построения прямой линии L под углом к любому геометрическому элементу. По подсказке уточняют угол между осями дорог. Точку О их пересечения как центр будущего кольца фиксируют, выбрав метод нахождения точек пересечения базовых элементов. Остальные оси строят в нужном направлении, переведя курсор в режим «Захват» и захватив точку О.

На рисунке значения дирекционных углов и углов между осями показаны только в методических целях. Конечно, в практической работе проставлять такие размеры в начале построений не следует.

Чтобы превратить отображенные на первом чертеже базовые элементы в видимые линии, необходимо:

  • ·установить параметры видимого элемента (тип линии, ее толщину и цвет, возможно, и условный знак для отображения этой линией какого-либо элемента);
  • ·выбрать метод создания видимого элемента, показанный на этой пиктограмме;
  • ·действуя по подсказкам, оставить в основном окне видимую часть осей дорог, пересекающихся в точке О (рис. 2).

Кромки проезжей части дорог строят методом подобных (эквидистантных) элементов, перемещая ось дороги на нужное расстояние. Буквы CLK на пиктограмме этого метода говорят о том, что таким образом можно эквидистантно (на равное по нормали расстояние) смещать и окружности, и линии, и клотоиды.

Трудность дальнейшего конструирования заключается в том, что нужно согласовать радиус кольца с радиусами правоповоротных съездов. В некоторых практических случаях ведущим параметром служит радиус внешнего кольца, который определяется ограничениями на размеры площадки для строительства развязки. В других случаях за основу берут предельное значение радиуса правоповоротного съезда для обеспечения расчетной скорости. В нашем примере по методическим причинам реализован второй случай, поскольку приемы конструирования здесь несколько более разнообразны. В примере радиус съезда - 15 м, а ширина полосы движения на съезде - 4 м.

Прежде всего строят правоповоротный съезд в самом остром углу - это критичная зона, определяющая величину радиуса кольца сопряжением прямой линии кромки проезжей части дороги B с кромкой проезжей части дороги C. Система предложит пять вариантов схем сопряжения, пиктограммы которых приводятся в диалоговом окне (на иллюстрации - ниже этого окна). Выбрав простой первый метод (вписывание круговой кривой), вводят значение радиуса окружности правоповоротного съезда (17 м = 15 м + 4/2 м). В результате будет построена базовая окружность, на основе которой и конструируется правоповоротный съезд, сопрягающий кромки проезжих частей дорог C и В.

Далее можно строить внешнюю окружность кольца, касающуюся первого правоповоротного съезда. Для этого прежде всего находят эту точку касания - на пересечении биссектрисы угла, в который вписан съезд, с самим съездом. При построении биссектрисы нужное значение дирекционного угла вводят в соответствующем диалоговом окне, сопровождающем метод построения любой линии (рис. 3).

Биссектрису строят как прямую через уже найденный центр пересечения.

Внешнюю окружность кольца конструируют методом построения окружности с центром в точке О и проходящей через построенную ранее точку касания на первом правоповоротном съезде.

В процессе построения в информационном окне фиксировались значения радиуса внешнего кольца, а по завершении построения они исчезли. В любой момент можно узнать параметры любого геометрического элемента - для этого необходимо выбрать пиктограмму информации о параметрах элементов (рис. 4). В нашем примере радиус построенной окружности равен 36 569 м.

Внутреннее кольцо можно построить разными способами (рис. 5):

  1. как окружность с указанным радиусом по местоположению центра;
  2. как окружность заданного радиуса, проходящую через выбранную точку;
  3. как окружность, эквидистантную внешнему кольцу.

Проще строить внутреннее кольцо третьим методом - не нужно вычислять радиус. Границу полос движения на кольце строят также смещением ее от любого кольца, например, на 4 м.

Конструируя сопряжения внешней окружности кольца с границами проезжих частей примыкающих к кольцу дорог, выбирают метод сопряжения элементов окружностями и далее строят все сопряжения примерно так же, как ранее был построен правоповоротный съезд, сопрягающий кромки проезжих частей дорог C и B. Различие лишь в том, что один из сопрягаемых элементов - это всегда внешняя кромка проезжей части кольца, а второй сопрягаемый элемент - граница проезжей части какой-либо из дорог (А, B, C, D, E).

Далее необходимо превратить кромку проезжей части съезда с дороги B на дорогу A в геометрический объект, который в дальнейшем будет именоваться трасса. В CREDO объект типа трасса - не обязательно ось сооружения. Трасса в координатной геометрии - всегда цепочка криволинейных и прямолинейных отрезков, сопряженных друг с другом. С трассой можно выполнять много операций: разрезать, склеивать, отображать пикетаж, изменять вид отображения (цвет и тип линии, тип условного знака), экспортировать в другие проектирующие программы и т.п. Кромка съезда лишь в простейшем случае является частью дуги (рис. 6).

В большинстве случаев кромка съезда - это трасса. Для построения трассы по кромке проезжей части съезда с дороги B на дорогу A используют метод создания трассы с указанием непрерывной цепочки сопряженных или пересекающихся элементов. В нашем случае это - прямолинейная часть кромки проезжей части дороги B, часть круговой кривой поворота направо, внешнее кольцо, часть круговой кривой съезда с кольца на дорогу А, на которой трасса и закончится. По завершении построения трассы от внешнего кольца останется только его видимая часть, остальное исчезнет, но - и это важно - базовый элемент сохранится в памяти компьютера и в любой момент будет доступен для дальнейших построений. Точно так же строят трассы по кромке проезжей части всех остальных съездов.

Внутреннюю границу полосы движения на съезде дороги A на дорогу E конструируют методом построения эквидистантных геометрических элементов; только в этом случае переносят не отдельный элемент, а всю трассу, причем со всеми базовыми элементами, на которых она основана (это еще одно важное свойство трасс).

Конструирование островков безопасности начинают с определения или построения ограничивающих их элементов, затем находят точки пересечения этих элементов по контуру островка и оставляют видимые элементы как границы островков безопасности. На дороге А островок безопасности ограничен:

  • ·внешним кольцом (линия 1);
  • ·левой (по ходу движения) границей правоповоротного съезда с дороги А на внешнюю полосу кольца (линия 2);
  • ·левой (по ходу движения) границей правоповоротного съезда с внешней полосы кольца на дорогу А (линия 3).

Для конструирования границ островка безопасности как разметочных линий устанавливают параметры их отображения, то есть в соответствующей диалоговой панели указывают цвет элемента (рис. 7).

Завершают конструирование кольцевой развязки проставлением пикетажа основных точек закруглений на съездах. Для этого не нужны сложные и громоздкие расчеты. В комплексе CREDO достаточно активизировать метод определения параметров элементов трассы и пикетажа и выбрать трассу, например съезд с дороги B на дорогу A. Далее, устанавливая курсор последовательно на элементы трассы-съезда, в информационном окне получают все характеристики данного элемента: тип элемента, то есть прямую, окружность или клотоиду, параметры элемента, например радиус, и пикетное положение начала и конца элемента на данной трассе.

Завершается проектирование развязки организацией движения. В системе CAD_CREDO можно выбрать из базы нужные знаки, перенести их на стойку и разместить в нужном месте на плане дороги (рис. 8).

В системе ZNAK можно запроектировать знаки, требующие редактирования (названия населенных пунктов, расстояния на схемах организации движения и т.п.), и разместить их на стандартных щитах.

Полностью канализированное пересечение

Цель проектирования канализированного пересечения - выделить отдельные полосы для движения по всем разрешенным направлениям. Основные функциональные требования к конструкции пересечения достигаются:

  1. выбором типа планировочного решения;
  2. обоснованием радиусов правых и левых поворотов, ширины полос движения, размеров переходно-скоростных полос и других элементов.

После функционального проектирования развязки ее конструируют, используя уже изложенные принципы и методы координатной геометрии:

  • ·строят оси пересекающихся дорог и параллельные им прямые - кромки проезжей части и линии, необходимые для расположения направляющих островков на главной дороге; выделяют на второстепенной дороге зону для размещения каплевидного островка, которую будут ограничивать линии, образующие между собой угол, например, 8°, а с осями дорог - 2 и 6°;
  • ·cтроят кромку правоповоротного съезда в остром и тупом углах, сопрягая прямолинейные кромки главной и второстепенной дорог закруглением с параметрами, например: радиус круговой вставки - 25 м, а длина переходных кривых - по 20 м для острого угла и 25 м для тупого;
  • ·элементы наружных кромок правоповоротных съездов объединяют в трассы (рис. 9);
  • ·левую границу левоповоротного съезда с главной дороги на второстепенную строят как составное закругление с радиусом круговой вставки 25 м и с переходными кривыми по 20 м. Левую границу левоповоротного съезда сo второстепенной дороги на главную строят как биклотоиду с радиусом 15 м в ее середине. Завершают конструирование полос движения на съездах построением эквидистантных трасс, смещенных на ширину полосы движения с учетом уширения, например на 4,25 м относительно уже построенных границ;
  • ·островок безопасности в остром углу строят, отсекая (превращая в невидимые линии) ненужные части трассы, ограничивающие островок (рис. 10);
  • ·каплевидные островки строят аналогично;
  • ·завершают построение, скругляя островки безопасности и вписывая в их углы кривые с радиусом 0,75 м. Элементы разметки выделяют цветом и типом линии (рис. 11

Тра́нспортная развя́зка - комплекс дорожных сооружений (мостов, туннелей, дорог), предназначенный для минимизации пересечений транспортных потоков и, как следствие, для увеличения пропускной способности дорог. Преимущественно под транспортными развязками понимаются транспортные пересечения в разных уровнях,

Рис. 18.3. Схема клеверообразных транспортных пересечений в двух уровнях:
а - полный клеверный лист; б - обжатый клеверный лист; в, г, д, е, ж - неполный клеверный лист

Рис. 18.4. Схемы кольцевых транспортных пересечений в двух уровнях:
а - турбинный тип; б - распределительное кольцо с пятью путепроводами; в - распределительное кольцо с тремя путепроводами; г - распределительное кольцо с двумя путепроводами.

Рис. 18.5. Схемы петлеобразных транспортных пересечений в двух уровнях:
а - двойная петля; б - улучшенная двойная петля

Рис. 18.6. Схема крестообразных транспортных пересечений в двух уровнях:
а - пересечение с пятью путепроводами типа «крест»; б - пересечение с отнесенными левыми поворотами

Рис. 18.7. Ромбовидные транспортные пересечения в разных уровнях:
а - с прямыми левыми поворотами; б, в - с полупрямыми левыми поворотами; г - в четырех уровнях

Рис. 18.8. Схемы сложных транспортных пересечений в двух уровнях:

а - с одним полупрямым левоповоротным съездом; б, в - с одним прямым левоповоротным съездом; г - с двумя полупрямыми левоповоротными съездами

Рис. 18.9. Схемы транспортных примыканий в двух уровнях:
а, б - полное примыкание типа «труба»; в - полное примыкание с двумя полупрямыми левоповоротными съездами; г, д, е - неполные примыкания

Клеверообразные пересечения «+» обеспечение развязки движения транспортных потоков по всем, либо по основным направлениям при двух пересекающихся магистралях; обеспечение безопасности движения; сравнительно невысокая стоимость строительства одного путепровода и соединительных рамп.

«-« ограничивающие сферу их применения: большая площадь, занимаемая развязкой; значительные перепробеги для левоповоротных транспортных потоков и потоков, осуществляющих разворот; необходимость дополнительных мероприятий для обеспечения безопасного движения пешеходов.

Кольцевые пересечения - характеризуются наибольшей простотой организации движения, однако требуют строительства от двух до пяти путепроводов, а также большой площади отчуждения земель.

Петлеобразные пересечения , например, «двойная петля» (рис. 18.5, а) или «улучшенная двойная петля» (рис. 18.5, б), устраивают при пересечении автомагистралей или магистральных улиц с дорогами второстепенного значения. «-»помимо необходимости строительства двух путепроводов, следует отнести также недостаточное обеспечение безопасных условий движения, так как транспортный поток с главной магистрали вливается в потоки второстепенного направления не с правой, а с левой стороны.


В стесненных условиях городской застройки применяют крестообразные пересечения в разных уровнях, например, по типу «крест » (рис. 18.6, а), пересечение в двух уровнях с отнесенными левыми поворотами (рис, 18.6, б) и т.д. Кроме минимальной площади занимаемых земель такой тип пересечения характеризуется минимальными перепробегами для лево- и правоповоротного движения, однако требует сооружения пяти путепроводов и исключает возможность разворота в пределах транспортного узла. Пересечение в двух уровнях с отнесенными левыми поворотами нередко применяют в условиях городской застройки.

Ромбовидные развязки (см. рис. 18.7) устраивают на пересечениях равнозначных магистралей со значительными размерами движения по всем направлениям. Занимая умеренную площадь, такие развязки практически исключают перепробеги для лево- и правоповоротных транспортных потоков, однако необходимость строительства большого числа путепроводов определяет весьма их высокую стоимость.

Чтобы ездить по чужой стране на автомобиле, следует сначала ознакомиться с правилами движения данной страны и изучить карту дорог. Особенно, если вы находитесь в большом городе, где могут быть дорожные развязки, не привычные для жителя России. А городов с очень сложными площадями и перекрестками в мире немало. Некоторые примеры таких мест мы приводим в этой статье.

Самая сложная развязка №1: Англия, Суиндон

Один из самых сложных перекрестков мира. Водители, которые побывали здесь, утверждают, что если бы подобное место находилось в России, проблемы были бы неизбежны. Однако англичане – люди неторопливые и законопослушные, и отношение друг к другу здесь немного другое – более острожное. Поэтому машины разъезжаются на этой развязке, которая представляет собой два круга: по внешнему машины едут в направлении по часовой стрелке, а по внутреннему – против часовой. А перед этим следует преодолеть развязку с пятью кольцевыми пересечениями.

Дорожная развязка №2: Гибралтар, гражданский аэропорт

Бывает и такое, что взлетная полоса пересекает одну из центральных улиц – Уинстон Черчилль авеню. Это всего лишь в полукилометре от самого центра. То есть, здесь достаточно оживленное движение. Однако самолеты и автомобили как-то умудряются разъезжаться.

Развязка №3: США, Лос-Анджелес

Автомагистраль, которая пересекается с железнодорожными путями поездов метро и транзитной веткой. Если посмотреть сверху, то можно увидеть сплошное переплетение дорог. Поэтому, лучше не рисковать и в таких сложных местах воспользоваться такси или общественным транспортом.

№4: Великобритания

Перекресток Спагетти – очень запутанная шестиуровневая дорога, соединяющая трассу М6 с автобаном. Если вы решили самостоятельно преодолеть это препятствие, вам придется хорошенько изучить эти хитросплетения, чтобы случайно не запутаться.

Дорожная развязка №5: Китай, Шанхай

Через реку Хуангпу проложен мост. Это очень длинный мост со спиралевидной развязкой, где ежедневно проносятся около 150000 автомобилей. Высота моста достигает 46 метров, так что следует быть крайне осторожным, совершая поездку по мосту Нанпу.

Сложная дорожная развязка №6: Россия, Москва

Таганская площадь – не самое легкое место в столице. Здесь образуются пробки из-за сложной развязки, ведь к площади стекаются несколько шестиполосных дорог. Те, кто живет в этом районе и никак не могут миновать сложный перекресток, ежедневно испытывают сложности.

Сложная развязка №7: Франция, Париж

Аварии на площади Шарля Де Голля происходят ежечасно. Здесь нет ни светофоров, ни дорожных знаков. Машины хаотично снуют по площади, но большинству из них как-то удается разъезжаться.

№8: Аргентина, Буэнос-Айрес

Одна из широчайших улиц мира Авенида де Хулио подвергает ежедневно риску множество водителей. Вам не помешает выдержка и железная стойкость, чтобы преодолеть все препятствия на знаменитой авеню.

Сложная дорога №9: США, Атланта

Развязка Том Мореланд прозвана «спагетти» из-за переплетения дорог. Вся сложность заключается в том, что водителю приходится молниеносно соображать, как правильно повернуть. Стоит допустить ошибку в направлении, и можно кружить здесь до ночи, пока не спадет транспортный поток.

№10: Япония, Токио

Водители негодуют по поводу непонятных японских дорожных знаков. Постоянные землетрясения в этой стране вынудили японцев стыки между дорожными плитами изготавливать из резины, чтобы они оставались гибкими. Машину в этих местах здорово штормит, а водителю крайне трудно сосредоточиться.

Пробки – проклятие любого современного мегаполиса. Для того чтобы сэкономить жителям городов время и распределить потоки машин, инженеры-проектировщики прибегают порой к потрясающим решениям, о которых мы и расскажем в нашем материале.

Развязка имени судьи Хэрри Преджерсона, Лос-Анджелес

Одна из самых запутанных в мире дорожных конструкций, объединившая трассы для пассажирского транспорта, транзитную дорогу Harbor и железнодорожное полотно зеленой линии лос-анджелесского метрополитена, была открыта в 1993 году. Это хитрое сплетение дорог, расположенное на пересечении шоссе I-105, ведущего из Эль Сегундо в Норуолк, и I-110, следующего из Сан-Педро в Лос-Анджелес, неспроста носит имя федерального судьи Гарри Преджерсона. Подобно знаменитому законнику, сумевшему разобраться в дебрях судебного спора о возведении I-105, автомобильная развязка мастерски разруливает бесконечные потоки машин. Всего за один день этот лабиринт, позволяющий поворачивать в любом направлении на всех участках пути, пересекает более 500 тысяч автомобилей. Проблема лишь одна – стоит пропустить один, тот самый, нужный поворот, и чудо инженерной мысли превратится для вас в бесконечную ленту Мебиуса.

Круговая велосипедная развязка, Эйндховен

Государственная поддержка велосипедистов, развернутая на территории Голландии, привела к потрясающим результатам: в последние годы большая часть населения страны предпочитает использовать в быту экологичный и экономный двухколесный транспорт. Для удобства тех, кто предпочел отказаться от автомобилей, стала создаваться специальная инфраструктура – например, уникальная дорожная развязка The Honvering в Эйндховене. Этот круговой стальной мост, подвешенный над оживленным транспортным узлом, позволяет объезжать автомобильные дороги. Удивительная конструкция удерживается на центральном 70-метровом столбе при помощи металлических тросов, а для надежности укреплена еще и бетонными колоннами. Создатели The Hovering утверждают: будущее как раз за такими технологиями, сводящими на нет дорожно-транспортные происшествия и украшающими пейзажи необычным футуристическим дизайном.

Развязка Грэйвелли-Хилл, Бирмингем

Строительство запутанной, будто клубок ниток, дорожной развязки в Бирмингеме заняло четыре года. Много технологических проблем и инженерных загвоздок стояло на пути проектировщиков, вынужденных объединить в одну сеть две железнодорожных линии и 18 автомобильных маршрутов, от трассы государственного значения А38, ведущей из Корнуола в Нортхэмпшир, до узких проселочных дорог, не имеющих названия, и перекинуть все это через три канала и две реки. Для обеспечения лучшей пропускной способности и хорошей устойчивости строители были вынуждены заново уложить почти 22 километра дорожного покрытия и установить 59 колонн, разместив шоссе на пяти разновысотных уровнях. С легкой руки репортера местной газеты результат нелегких трудов, явившийся миру в мае 1972 года, получил шутливое прозвище «Развязка спагетти». Уж больно эта пугающая конструкция напоминает «смесь тарелки с макаронами и неудачной попытки завязать стаффордширский узел».

Транспортная развязка на Таганской площади, Москва

Даже те, кто знает «правила игры» и давно передвигается по таганским улочкам-переулочкам, нередко теряются на Садовом кольце. Что уж говорить про тех, кто впервые оказался на пересечении самых оживленных дорог Москвы, раскинувшихся в сердце Центрального округа столицы. Там, где Большой Краснохолмский мост соединяется с улицей Земляной вал, всегда царит хаос. Несколько автомобильных дорог, ведущих с Нижней и Верхней Радищевских, Гончарной, Марксистской, Воронцовской, Таганской, Народной улиц и насчитывающих по шесть и более полос, кишат бесконечными рядами автомобилей. Несмолкающий шум проезжающего транспорта прорезают резкие сигналы, а пробкам в часы пик не видно ни конца, ни края. Красочную картину одной из самых страшных дорожных развязок мира довершают две станции московского метро, автобусная остановка и практически полное отсутствие указателей.

Развязка на площади Шарля де Голля, Париж

Гениальные французские градостроители, подарившие Парижу площадь Звезды, наверняка не обладали даром предвидения. За прошедшие века «пятачок» возле прославленной Триумфальной арки, оживленный даже по меркам XIX века, превратился в настоящий ад для автомобилистов. Несмотря на то, что от центрального городского плаца, будто лучи звезды, расходятся в разные стороны 12 прямых и широких проспектов, и сходятся несколько линий метро, RER, автобусных маршрутов и автомобильных дорог, здесь нет ни светофоров, ни знаков приоритета. Немудрено, что даже парижские таксисты, проезжающие по округе по сто раз за день, грустно вздыхают, получив заказ на площадь Шарля де Голля. Ни интуиция, ни хорошее знание правил дорожного движения, ни многолетний водительский стаж не спасают от ужаса, творящегося тут в час пик: на развязке, попавшей в рейтинг самых сложных путей в мире, случается по несколько аварий в час.