Создание своими руками вечного двигателя, видео. Жидкостный вечный двигатель для автомобиля

| Разгар дискуссии о вечном двигателе. | Споры вокруг перпетуум мобиле.

Гидравлические вечные двигатели.

Один из неписаных законов жизни утверждает, что авторы самых важных открытий и изобретений часто остаются безвестными - время уносит имена этих людей раньше, чем окружающие успевают заметить их свершения. Вот уже тысячи лет вертятся лопатки водяного колеса - замечательнейшей машины давнего прошлого, машины, сопровождавшей развитие цивилизации с самого начала ее зарождения до настоящего времени. Тысячи мельниц, пил и насосов приводил в действие этот двигатель, который наряду с мускульной силой человека и животных столетиями являлся единственным реальным источником их двигательной силы. Правда, несмотря на свою простоту, водяное колесо обладало и существенным недостатком - оно нуждалось в достаточном количестве проточной воды вне зависимости от времени года. Должно быть, именно поэтому большой популярностью пользовалась идея работы водяного колеса в замкнутом цикле, что позволило бы сделать его независимым от изменчивых водяных потоков и тем самым обеспечить более широкое его использование. Слабость же этой идеи заключалась в том, что оставалось неясным, как доставлять воду обратно, к лотку, питающему лопатки водяного колеса.

На рисунках 37 , 38 , 39 представлены старинные, относящиеся к 1661 г., гравюры, изображающие так называемые сухие водяные мельницы. Подобные мельницы приобрели широкое распространение в конце XVII в., создание их часто связывается с именем Хайне , кузнечных дел мастера из Лемсала. Водяные мельницы Хайне привлекли внимание графа Меллина , составившего подробный обзор этих устройств - «Иллюстрированное описание так называемой сухой водяной мельницы в городе Лемсале в Лифляндии », опубликованный в «Торговой газете » в 1796 году. С аналогичными рисунками и чертежами мы встречаемся и у Каспара Шотта , Атанасия Кирхера , Якобо де Страды и др. Авторы всех этих проектов, взятых из книги Бёклерна «Новый театр машин », изданной в Нюрнберге в 1661 г., использовали для подачи воды в верхний лоток так называемую коклею (водяную спираль), или архимедов винт. К наиболее интересным элементам, изображенным на этих рисунках, относится пропеллерная (лопаточная) турбина, постепенно заменявшая привычное водяное колесо. Предложенный де Страдой в 1629 году проект вечного двигателя, в котором использовалось водяное колесо с верхней подачей воды (по внешнему виду он был аналогичен вечным двигателям, представленным и книги Беклерна), предназначался для привода шлифовальных кругов.

Рисунок 37 Рисунок 38

Рисунок 39

Схемы сухих водяных мельниц, создававшихся по принципу гидравлического перпетуум мобиле, так никогда и не были реализованы на практике. Об этом свидетельствует целый ряд проектов, отличающихся друг от друга лишь некоторыми деталями конструкции. В попытках увеличить количество воды, подаваемой к верхнему лотку колеса, авторы подобных проектов часто прибегали к объединению двух или более архимедовых винтов рисунок 39 . Гидравлическим перпетуум мобиле с архимедовым винтом занимался также английский епископ Джон Уилкинс , подробно описавший его в своем сочинении «Математическая магия », опубликованном в 1648 г. Еще один проект гидравлического вечного двигателя, чертеж которого приведен на Рисунок 40 , представляет собой нечто среднее между трехступенчатым водяным колесом и турбиной в тройном каскаде, сидящими на общем наклонном валу. Внутри этого вала размещался архимедов винт, поднимавший воду из нижнего резервуара на лопатки самого верхнего колеса. Чтобы выяснить всю несостоятельность этих проектов, проанализируем кратко работу водяного колеса и проведем примерную оценку его энергетического баланса. Рассмотрим сначала водяное колесо с подачей воды сверху - этот единственный гидравлический двигатель, в котором непосредственно используется потенциальная энергия падающей воды. Действительно, находящаяся в верхнем лотке вода падает в ковши рабочего колеса и своей тяжестью заставляет их двигаться вниз до тех пор, пока колесо не повернется примерно на пол-оборота и вода не выльется в отводящий канал. Диаметр водяных колес обычно выбирался приблизительно равным высоте используемого перепада уровней. Следовательно, в случае значительных перепадов водяное колесо теряло ряд своих преимуществ, поскольку оно становилось слишком большим и тяжелым. Мощность, развиваемая колесами водяных мельниц и пил, составляла обычно от 3,5 до 11 кВт при перепаде от 3 до 12 м и секундном расходе воды порядка 0,1-0,8м 3 . При этом колесо всегда располагалось строго над поверхностью воды в отводном канале, с тем чтобы при повышении уровня в нем нижний край колеса не оказывался бы в воде. Именно это обстоятельство не позволяло полностью использовать всю потенциальную энергию воды, определявшуюся теоретически только разностью высот верхнего и нижнего уровней. Общая сумма потерь даже у тщательно изготовленного водяного колеса с верхней подачей воды достигала примерно 20%, так что коэффициент полезного действия такого колеса никогда не превышал 80% В эту цифру не включены, однако, потери энергии в передаточном механизме, представляющем собой необходимый элемент каждого двигателя. Таким образом, после подсчета всех потерь и пассивных сопротивлений собственно колеса и передаточных звеньев коэффициент полезного действия всего устройства падает уже до 50-60%; эффективность же колес с подачей воды на среднем и нижнем уровне оказывается еще более низкой. В случае использования водяного колеса в качестве движущего элемента перпетуум мобиле приводимое им в действие перекачивающее устройство должно было доставлять к верхнему лотку ровно такое же количество воды, которое в тот же самый момент вытекало на лопатки самого колеса. Даже если при этом не учитывать потери в перекачивающем насосе, то потребляемая насосом мощность должна в точности соответствовать потенциальной энергии воды, которая определяется упомянутой разностью верхнего и нижнего уровней и которую, как говорилось выше, никакое водяное колесо полностью использовать не может. Это обстоятельство уже само по себе доказывает, почему не может существовать сухая водяная мельница с замкнутым круговоротом воды.


Рисунок 40

К аналогичному выводу еще в 1724 г пришел Якоб Леупольд , подробно рассматривавший этот вопрос в своей книге «Всеобщий театр машин », изданной в Лейпциге; свою отрицательную точку зрения на подобные устройства он выразил следующими словами: «Один фунт (т.е. груз) способен удержать другой фунт в равновесии, но никогда не сможет привести его в движение».


Рисунок 41

Рисунок 41 , заимствован из рукописи, в которой содержится описание двух любопытных машин, предложенных в 1788 г. флорентийским аббатом Винсентом Ольми . Ведущее колесо изображенного здесь гидравлического перпетуум мобиле имеет лопатки ложкообразной формы, несколько напоминающей форму лопаток современной турбины Пелтона (ковшовой турбины). Подача воды осуществляется с помощью сужающегося желоба, направленного на определенную лопатку в нижней части колеса, которое вращается в вертикальной плоскости; тем самым используется как потенциальная, так и кинетическая энергия воды. Интересно, что это техническое решение оказывается очень похожим на сопловой аппарат турбины Пелтона. Сам Ольми утверждал, что его перпетуум мобиле способен перекачивать большие объемы воды и при том сам приводится этой водой в движение. Вместо архимедова винта для подъема воды из нижней емкости в сборный резервуар выходного сопла здесь используются два черпаковых насоса. В безупречности своего проекта, которому на самом деле нельзя отказать в определенной доле оригинальности, сам Ольми, судя по всему, абсолютно не сомневался, поскольку на последующих страницах рукописи он приводит даже подробные чертежи отдельных его частей. Кроме перпетуум мобиле Ольми занимался разработкой и проектированием других интересных машин. Например, в том же сочинении он описывает и дает чертежи устройства для подъема и транспортировки тяжестей на горных склонах, а также различных вспомогательных приспособлений, предназначенных для военных целей.

Рисунок 42

На старинном Рисунок 42 из парижского «Журнала ученых », относящемся к 1678 г., показан другой вечный двигатель - гидравлический перпетуум мобиле Станислава Сольского , который он демонстрировал при дворе польского короля в 1609-1610 гг. Принцип его работы, по замыслу автора, заключался в следующем. Главными частями этого вечного двигателя являлись водяной насос и колесо mm . По мере опускания груза V ушат P постепенно поднимается вверх. Одновременно с ним поднимается клапан в насосе, и вода начинает поступать в сосуд abcd . Через выпускной канал n она попадает в круглый резервуар g , открывает в нем заслонку и через кран r выливается в ушат P . В результате ушат P под тяжестью воды начинает опускаться, однако в некоторый момент посредством натянувшейся веревки t , прикрепленной с одной его стороны, он наклоняется и опорожняется. Пустой ушат P вновь поднимается наверх, груз V опять начинает опускаться, и вся процедура повторяется заново. Колесо mm в этом случае должно совершать только колебательные движения.


Рисунок 43

Два следующих перпетуум мобиле, описания которых приводятся далее, должны были работать в соответствии с законом Архимеда о подъемной силе в жидкостях. Главной частью первого из них, как ясно из Рисунок 43 , является вращающийся вокруг горизонтальной оси барабан с наглухо закрытыми торцами. Внутри барабана располагались две взаимно перпендикулярные перекрещивающиеся тяги с насаженными на них большими пробковыми шарами. На внешних концах этих тяг, пропущенных сквозь боковую поверхность барабана через водонепроницаемые вводы, укреплялись металлические грузы. При этом пробковые поплавки должны были отклонять тяги в соответствующем направлении, что обеспечивало бы необходимое неравновесие сил, приводившее барабан в непрерывное и равномерное вращение.

Рисунок 44

Гораздо более сложный тип гидравлического вечного двигателя представлен на Рисунок 44 . В бак с жидкостью погружен ротор, от которого отходят 6 трубчатых рычагов с пузырями на концах. Сами же рычаги укреплены в специальной обойме, вращающейся на полом валу. При вращении ротора через щель в валу воздух из полости вала последовательно поступает в трубки рычагов. Создание избыточного давления и перекачивание воздуха производятся с помощью специального меха, расположенного под баком и приводимого в действие непосредственно от кривошипа на валу ротора Выпускание воздуха из пузырей обеспечивает обозначенный на рисунке черным кружочком специальный кулачок, находящийся над поверхностью жидкости в баке. Для закрывания заслонки в трубке служит другой кулачок, остающийся ниже поверхности жидкости. Принцип действия этого вечного двигателя вполне очевиден из чертежа.

Рисунок 45

Очень простым по устройству представляется и гидравлический перпетуум мобиле, показанный на Рисунок 45 . Погруженная в воду часть деревянного барабана, согласно закону Архимеда, подвергается действию выталкивающей силы. Автор этого проекта исходил из предположения, что если эта выталкивающая сила окажется больше силы трения в оси барабана, то барабан будет непрерывно вращаться в направлении, указанном на рисунке стрелкой. В действительности же движения не будет вообще, поскольку архимедова сила будет направлена не вверх, а перпендикулярно к поверхности барабана. В самом деле, если разбить искривленную поверхность барабана на элементарно малые плоские участки и представить, что на каждый из этих участков действует элементарная выталкивающая сила, направленная к центру вращения колеса, то результирующая сила, будучи суммой элементарных сил, также окажется направленной к оси колеса. Понятно, что сила, действующая в радиальном направлении, не сможет вызвать никакого вращательного движения колеса.


Рисунок 46

Несколько непривычный вид имеет гидравлический вечный двигатель, изображенный на Рисунок 46 . Основной его частью является равноплечее коромысло с двумя шарнирно-подвешенными бачками на концах. Находясь в верхнем положении, один из бачков автоматически открывает отверстие в дне верхнего резервуара и наполняется вытекающей из него водой. Под тяжестью наполненного водой бачка плечо коромысла начинает опускаться до тех пор, пока бачок не коснется поверхности воды в нижнем резервуаре. При этом специальный неподвижный штырь открывает заслонку в самом бачке и выпускает из него воду в нижний резервуар. В тот же самый момент начинается аналогичный рабочий цикл для бачка на противоположном конце коромысла. Перекачивание воды обратно в верхний резервуар автор намеревался предоставить двум поршневым насосам, приводимым в действие самим коромыслом.

Особую группу гидравлических перпетуум мобиле составляли устройства, в которых использовались известные законы капиллярного поднятия жидкостей. Мы довольно часто сталкиваемся с описанием вечного двигателя, в котором вода или масло поднимаются по капиллярам ткани фитиля в расположенный выше сосуд, далее по другому фитилю рабочая жидкость поднимается еще выше и т.д., пока наконец она не достигает самого верхнего сосуда, откуда и подается по желобу к лопаткам водяного колеса. Колесо поворачивается, жидкость стекает в нижний сосуд, и весь процесс капиллярного поднятия повторяется заново. Если бы мы на самом деле изготовили такое устройство, то оказалось бы, что лопастное колесо этой машины никогда не станет вращаться, поскольку в верхнем сосуде не окажется ни капли воды. Дело в том, что капиллярные силы хотя и позволяют преодолеть силу тяжести, поднимая жидкость в ткани фитиля, но они же и удерживают ее в порах ткани, не позволяя ей вытечь из них. Допустив тем не менее, что под действием капиллярных сил жидкость все-таки может попасть в верхний сосуд, мы одновременно должны считаться и с тем, что она точно так же может стекать по фитилю обратно в нижний сосуд.


Рисунок 47

В литературе очень часто упоминается еще об одной попытке создания вечного двигателя, использующего капиллярные свойства жидкостей, - о вечном двигателе Вильяма Конгрева , подробно описанном Иоганном фон Поппе в его книге «Перпетуум мобиле и искусство управления », изданной в Тюбингене в 1832 году. С точки зрения механики устройство экспериментальной машины Конгрева было очень простым, как это видно из Рисунок 47 . Она представляла собой надетую на три ролика бесконечную замкнутую ленту из пористого материала с цепочкой грузов, укрепленных по ее внешнему контуру. Автор предполагал, что его машина будет работать следующим образом. При погружении всей системы в воду так, чтобы оба нижних ролика оказались ниже поверхности воды, погруженная часть ленты пропитается водой. При этом за счет капиллярных сил вода будет подниматься до определенной высоты и по передней, вертикальной части ленты. Грузы же на наклонной части ленты выдавят из нее воду, впитавшуюся в поры материала в то время, пока эта часть ленты находилась под водой. При выдавливании воды из наклонной части ленты нарушится равновесие сил, определяемых весом воды на вертикальном и наклонном участках ленты. Поскольку вертикальная часть ленты, не сдавливаемая грузами, сохранит впитавшуюся в поры воду и тем самым окажется тяжелее ровно на вес воды, поднятой в ней за счет капиллярных сил. Так, если в соответствии с приведенными рассуждениями вода на вертикальном участке ленты поднимется на 1 дюйм (2,54 см), то лента шириной и толщиной в 1 фут будет обладать тяговым усилием за счет пропитавшей ее воды, равным примерно 30 фунтам (133,4H). Если же лента придет в движение, в чем Конгрев абсолютно не сомневался, то поверхность воды в местах ее соприкосновения с лентой немного прогнется, в результате чего высота поднятия воды за счет капиллярных сил окажется несколько большей. Автор считал, что при высоте капиллярного поднятия около 5 дюймов движущая сила достигнет 150 фунтов (667 H), а при высоте 9 дюймов и окружной скорости движения ленты 13,7 м/мин эта сила возросла бы до 180 фунтов (801 Н). В этом случае машина Конгрева по своей производительности уже значительно превзошла бы возможности человека. Несмотря на свои утопические представления относительно увеличения размеров подобной машины, по сообщению «Лондонского журнала ремесел » за май 1827 г., автор сумел разработать вечный двигатель огромных размеров полезной мощностью 58,7 кВт.

Рисунок 48

Примерно около 1640 г. неким А. Мартином были изобретены и построены знаменитые «гидравлические часы », изображенные на Рисунок 48 . Самодвижущийся механизм этого устройства предназначался для вращения стрелок на циферблате часов. Находящаяся в герметически закрытом сосуде вода под действием капиллярных сил должна была подниматься по длинной, узкой, загибающейся наверху трубочке и вытекать из нее на лопатки водяного колеса. Уже при первом взгляде на схему «вечного » хронометрического устройства Мартина становится очевидным, что у его создателя также было несколько преувеличенное представление о возможностях капиллярных сил. Дело в том, что явление капиллярности основано на различии величины межмолекулярных сил между отдельными частицами жидкости и сил взаимодействия между этими частицами и твердой стенкой трубки. Именно результирующая этих двух сил определяет, что будет наблюдаться в капилляре: повышение или понижение уровня жидкости, т.е. так называемое капиллярное поднятие или капиллярная депрессия. Это явление ограничивается, однако, определенными рамками. Изобретатель, по-видимому, и не предполагал, что вода в узкой трубке поднимается лишь на такую высоту, при которой гидростатическое давление поднятого водяного столба не превышает величину капиллярных сил сцепления. Так, в стеклянной трубке с внутренним диаметром 1 мм вода, например, поднимется на 30, спирт - на 12, а эфир - на 10 мм.

Авторы проектов механических и гидравлических перпетуум мобиле всегда оказывались в затруднении при решении вопроса о доставке грузов или жидкости назад, в исходное положение, что позволяло бы обеспечить непрерывность рабочего цикла их машин. Вместе с тем на всех этих примерах мы могли убедиться, что пути, которыми шли многие из них, оказывались весьма извилистыми и с самого начала не сулили им много успехов. Большинство их экспериментов походило на блуждания в заколдованном круге, где одни изобретатели повторяли ошибки других в надежде оказаться более удачливыми.

Джамбаттиста Порта , знаменитый ученый, экспериментатор и изобретатель «волшебного фонаря », изучая устройство сифона, предложенного еще Героном Александрийским , пришел к идее нового вечного двигателя, который он намеревался использовать для перекачивания воды. Между тем его замыслы побудили архитектора Витторио Цонку заняться непосредственной разработкой проекта такого «сифонного» перпетуум мобиле. Необъяснимое поведение жидкостей в сифоне (например, тот факт, что вода сама поднимается по одной трубке сифона, протекает через изгиб и через вторую трубку вытекает в расположенный ниже сосуд) дало повод к появлению нового понятия - так называемой боязни пустоты (horror vacui ). Сам великий Галилей утверждал, что природа действительно боится пустоты. По его мнению, именно стремление воспрепятствовать возникновению безвоздушного пространства заставляет воду подниматься и опускаться в трубках сифона. В свое время анализу понятия вакуума посвятил часть своих философских рассуждений еще Аристотель . Так, он утверждал, что вакуум никогда не может появиться в природе, потому что для возникновения стремительного движения всегда необходим воздух, который бы сначала расступался перед телом, а затем опять смыкался за ним. Из учения Аристотеля, благодарно воспринимавшегося консервативно настроенными схоластическими кругами, постепенно и развилась средневековая теория «боязни природы перед пустым пространством », которая послужила основой многих фантастических попыток использовать эту «боязнь » в своих целях.

Известно, что работа, затрачиваемая на подъем жидкости в сифоне, производится давлением воздуха, обусловленным разницей уровней жидкости в сосудах, которые соединяют оба колена сифона. В то же время для того, чтобы жидкость могла протекать через сифон, максимальная высота его изгиба не должна превосходить высоту столба жидкости, уравновешиваемого давлением внешнего воздуха. Для ртути, например, эта высота при нормальном барометрическом давлении составляет 76 см, а для воды - около 10 м. Конечно, Джамбаттиста Порта всего этого мог тогда и не знать - ведь он был уверен, что с помощью своего «вечного » сифона сможет перекачивать воду даже через высокие горы.

Рисунок 49

Как мы уже упоминали, перенос этой идеи в область разработки перпетуум мобиле впервые осуществил городской архитектор из Падуи Витторио Цонка. Правда, в отличие от Порты он вовсе не собирался строить гигантские сифоны для перекачивания воды через горные хребты. На Рисунок 49 представлено изображение предложенной им сифонной мельницы с турбинным водяным колесом. Работу этой «сухой мельницы » Цонка представлял себе примерно так. После закрытия обоих концов трубы через отверстие в ее наивысшей точке трубу до самого верха заливают водой. Затем верхнее отверстие закрывается; при открытии же обоих нижних отверстий сифона в мельнице, по мнению автора, автоматически должно возникнуть установившееся течение воды.

В 1607 г., когда Цонка опубликовал описание своего изобретения в книге «Новый театр машин и сооружений », свойства барометрического давления практически еще не были известны. Впрочем, это следует уже из самого рисунка машины Цонки. Ведь если отверстие всасывающего колена сифона лежит ниже выходной горловины, то перекачка воды оказывается невозможной, даже если высота точки изгиба трубы удовлетворяет указанному ранее условию. Цонка попытался преодолеть возникшую перед ним трудность, расширив сечение трубы вблизи выпускной горловины в надежде, что увеличение массы воды, сосредоточенной в этой части сифона, увеличит всасывающий эффект в другом его колене.

Горняки и колодезных дел мастера в своей работе часто сталкивались с эффектом «боязни пустоты », однако в своих рассуждениях они не считали полностью правыми ни Порту, ни Цонку, поскольку, например, оказывалось, что обычные поршневые насосы не в состоянии были выкачивать воду больше, чем с десятиметровой глубины. Сам Галилей признавал, что «боязнь пустого пространства » в природе имеет свои границы, определяемые «неспособностью водяного столба удерживать в трубе собственный вес ». Только после его смерти Торричелли сумел раскрыть сущность этого явления, использовав в своих опытах с вакуумом вместо воды ртуть. При этом он экспериментально установил, что столбику ртути высотой в 76 см соответствует десятиметровый столб воды - это и была как раз та граница, которую не могли преодолеть копавшие колодцы мастера, не раз старавшиеся увеличить высоту всасывания своих насосов. При этом Торричелли указал, что не «страх » перед безвоздушным пространством, а давление окружающего воздуха удерживает ртуть или воду в запаянной наверху трубке с открытым нижним концом. Своим открытием Торричелли одновременно решил две проблемы: во-первых, он нанес тяжелый удар общепризнанной до того времени механике Аристотеля и, во-вторых, показал, насколько нереальными являлись представления Порты и Цонки по поводу мнимого «страха » природы перед пустотой с точки зрения создания перпетуум мобиле.

Рисунок 50

К сожалению, неудачи в попытках построения вечных двигателей на основе использования законов гидростатики и эффекта капиллярности не являлись для сторонников гидравлических перпетуум мобиле достаточно весомым аргументом в научных спорах. Исследованию подобных возможностей отдали дань даже некоторые известные ученые-физики. На Рисунок 50 приведен перпетуум мобиле, предложенный знаменитым математиком Иоганном Бернулли -старшим . Принцип действия этого вечного двигателя основывался на использовании явления осмоса - взаимной диффузии двух жидкостей, разделенных пористой стенкой. Устройство Бернулли не имело никаких движущихся частей - непрерывное движение обеспечивалось одной из использовавшихся в нем жидкостей. Главной и но существу единственной его частью являлся сосуд со вставленной в него стеклянной трубкой, нижний конец которой закрывался мембраной, пропускавшей через свои поры только более легкую жидкость. Автор предполагал заполнить сосуд тяжелой жидкостью B , а снабженную мембраной трубку - менее плотной жидкостью A . При этом длину трубки a и высоту жидкости b в сосуде он рекомендовал выбирать таким образом, чтобы выполнялось соотношение

b/a > 2В /(А+В) .

По мнению автора, при выполнении этого условия более легкая жидкость проникала бы через мембрану из сосуда в трубку, в результате чего смесь обеих жидкостей переливалась бы через верхний край трубки и вновь попадала в сосуд - весь этот процесс должен был продолжаться бесконечно. Сам Бернулли утверждал, что принцип, использованный им в этом устройстве, является, собственно, не его идеей, а чистой аналогией грандиозного естественного явления - круговорота воды в природе. С его точки зрения, природа сама доказывает возможность существования перпетуум мобиле с замкнутым циклом влагооборота. Ведь именно в природе вода сама поднимается из глубин океана к поверхности и, испаряясь, выпадает потом на склоны гор, откуда через родники, ручьи и реки стекает обратно в океан. Морская же вода содержит много солей, следовательно, ее плотность больше, чем у чистой воды. Мембраной, или по существу гигантским фильтром, является здесь сама Земля, задерживающая в себе соли и пропускающая к родникам одну лишь чистую воду. Иоганн Бернулли -старший был не единственным, кто интересовался принципом двухжидкостного перпетуум мобиле.

Рисунок 51

Его современник, французский аббат Жан д"От-Фей , известный физик, механик и часовых дел мастер, исходя из тех же предположений, выбрал, однако, более сложный путь - создать вечный двигатель с использованием химической реакции. Полость A его устройства, изображенного на Рисунок 51 , заполняется растворами винного камня и купороса. При их перемешивании начинается реакция с выделением газов, которые, закрывая клапаны у отверстий на концах двухколенной изогнутой трубки C , выдавят часть смеси в камеру D где с определенного момента возникает избыточное давление. Это давление закрывает действующий лишь в одну сторону клапан на конце трубки B и отделяет тем самым жидкость в камере D от жидкости, оставшейся в полости A . Аббат От-Фей предполагал, что смесь из камеры D будет постепенно отфильтровываться так, что в одном колене трубки C окажется чистый раствор винного камня, а в другом - раствор купороса. При этом через нижние клапаны оба раствора должны были снова вытекать в полость A и объединяться в исходную смесь. К сожалению, рассуждения автора основывались на неправильном допущении, что по окончании химической реакции, возникшей при смешивании первичных веществ, возможно вновь получить оба компоненты в исходном их состоянии и тем самым продолжать процесс бесконечно.


Рисунок 52

В 1685 г. в одном из выпусков лондонского научного журнала «Философские труды » был опубликован предложенный французом Дени Папеном проект гидравлического перпетуум мобиле, принцип действия которого должен был опровергнуть известный парадокс гидростатики. Как видно из изображенного на Рисунок 52 , это устройство состояло из сосуда, сужавшегося в трубку в форме буквы C , которая загибалась кверху и своим открытым концом нависала над краем сосуда. Автор проекта ошибочно предполагал, что вес воды в более широкой части сосуда обязательно будет превосходить вес жидкости, находящейся в трубке, т.е. в более узкой его части. Это означало, что жидкость своей тяжестью должна была бы выдавливать саму себя из сосуда в трубку, по которой ей вновь приходилось бы возвращаться в сосуд, - тем самым достигалась требуемая непрерывная циркуляция воды в сосуде. К сожалению, Папен не осознавал того, что решающим фактором в данном случае является не разное количество (а с ним и различный вес жидкости в широкой и узкой частях сосуда), а прежде всего свойство, присущее всем без исключения сообщающимся сосудам: давление жидкости в самом сосуде и изогнутой трубке всегда будет одинаковым. Гидростатический парадокс как раз и объясняется особенностями этого по существу своему именно гидростатического давления. Называемый иначе парадоксом рисунок 61

и рисунке 62 . Они привлекают наше внимание несколько необычным решением своих кинематических механизмов. Первый из них рисунок 61 представляет собой вечный двигатель, относящийся к тому небольшому классу машин, в которых в качестве рабочего тела использовался сыпучий материал - песок. Ковши, укрепленные на специальных рычагах рабочего колеса, подавали песок в верхний наклонный желоб. Далее по нижнему желобу песок возвращался обратно, в камеры, размещенные между щеками рабочего колеса. По мере вращения колеса камеры поочередно оказывались в крайнем нижнем положении, в этот момент песок из них высыпался и затем снова подхватывался ковшами, в результате чего весь цикл должен был повторяться вновь. На рисунке 62 изображен вечный двигатель, который приводился в движение сжатым воздухом, поступавшим к нему от кузнечного меха. При этом работа меха обеспечивалась с помощью неравноплечего рычажного механизма, связанного с кривошипом, который в свою очередь должен был приводиться в действие зубчатой передачей от вала лопастного колеса воздушного мотора.

Анализ собрания старинных чертежей и рисунков из рукописи Хольтцхамера вновь подтверждает тот факт, что исследование проблемы вечного движения являлось весьма благодарной темой для ученых и инженеров эпохи позднего Возрождения и раннего барокко; при этом среди большого количества стандартных технических решений и однотипных идей мы обнаруживаем и такие, которые выделяются известным остроумием и значительной долей оригинальности.

Если бы мы захотели подвергнуть рассмотрению и разбору проекты всех без исключения гидравлических перпетуум мобиле, это заняло бы у нас слишком много места и времени. Правда, с некоторыми из них мы еще встретимся в другом разделе, где описываются попытки создания вечных двигателей в XIX и XX веках. Однако и на этих примерах мы опять сможем убедиться в главном - основой для комбинаций, из которых современные изобретатели создавали десятки конструктивных вариантов, всякий раз выдавая их за оригинальное решение, почти всегда служили все те же несколько основных физических принципов.

Технология вечного двигателя привлекала людей во все времена. Сегодня она считается скорее псевдонаучной и невозможной, нежели наоборот, но это не останавливает людей от создания все более диковинных штуковин и вещиц в надежде нарушить законы физики и произвести мировую революцию. Перед вами десять исторических и крайне занимательных попыток создать что-то, похожее на вечный двигатель.

Батарейка Карпена

В 1950-х годах румынский инженер Николае Василеску-Карпен изобрел батарею. Ныне расположенная (хотя и не на стендах) в Национальном техническом музее Румынии, эта батарея по-прежнему работает, хотя ученые до сих пор не сошлись во мнении, как и почему она вообще продолжает работать.

Батарея в устройстве остается той же одновольтной батарейкой, которую Карпен установил в 50-х годах. Долгое время машина была забытой, пока музей не был в состоянии качественно выставлять ее и обеспечивать безопасность такой странной штуковине. Недавно обнаружили, что батарея работает и по-прежнему выдает стабильное напряжение - спустя уже 60 лет.

Успешно защитив докторскую степень на тему магнитных эффектов в движущихся телах в 1904 году, Карпен наверняка мог создать что-то из ряда вон выходящее. К 1909 году он занялся исследованием высокочастотных токов и передачи телефонных сигналов на большие расстояния. Строил телеграфные станции, исследовал тепло окружающей среды и продвинутые технологии топливных элементов. Однако современные ученые до сих пор не пришли к единым выводам о принципах работы его странной батареи.

Было выдвинуто множество догадок, от преобразования тепловой энергии в механическую в процессе цикла, термодинамический принцип которого мы пока не обнаружили. Математический аппарат его изобретения кажется невероятно сложным, потенциально включая понятия вроде термосифонного эффекта и температурных уравнений скалярного поля. Хотя мы не смогли создать вечный двигатель, способный вырабатывать бесконечную и бесплатную энергию в огромных количествах, ничто не мешает нам радоваться батарейке, непрерывно работающей в течение 60 лет.

Энергетическая машина Джо Ньюмана

В 1911 году Бюро патентов США выпустило огромный указ. Они больше не будут выдавать патенты на устройства вечных двигателей, поскольку кажется научно невозможным создать такое устройство. Для некоторых изобретателей это означало, что сражаться за признание своей работы законной наукой теперь будет немного сложнее.

В 1984 году Джо Ньюман попал на вечерний выпуск новостей CMS с Дэном Разером и показал нечто невероятное. Живущие во время нефтяного кризиса люди были в восторге от идеи изобретателя: он представил вечный двигатель, который работал и производил больше энергии, чем потреблял.

Ученые, впрочем, не поверили ни единому слову Ньюмана.

Национальное бюро стандартов испытало устройство ученого, состоящее по большей части из аккумуляторов, заряжаемых магнитом, вращающимся внутри катушки из провода. Во время испытаний все заявления Ньюмана оказались пустыми, хотя некоторые люди продолжали верить ученому. Поэтому он решил взять свою энергетическую машину и отправиться в тур, по дороге демонстрируя ее работу. Ньюман утверждал, что его машина выдает в 10 раз больше энергии, чем поглощает, то есть работает с КПД свыше 100%. Когда его патентные заявки были отвергнуты, а научное сообщество буквально выбросило его изобретение в лужу, горю его не было предела.

Будучи ученым-любителем, который даже не закончил среднюю школу, Ньюман не сдавался, даже когда никто не поддерживал его план. Убежденный, что Бог ниспослал ему машину, которая должна изменить человечество к лучшему, Ньюман всегда считал, что истинная ценность его машины всегда была сокрыта от властей предержащих.

Водяной винт Роберта Фладда

Роберт Фладд был своего рода символом, который мог появиться лишь в определенное время в истории. Наполовину ученый, наполовину алхимик, Фладд описывал и изобретал разные вещи на рубеже 17 века. У него были довольно странные идеи: он считал, что молнии были земным воплощением гнева Божьего, который поражает их, если те не бегут. При этом Фладд верил в ряд принципов, принятых нами сегодня, даже если большинство людей в те времена их не принимало.

Его версией вечного двигателя было водяное колесо, которое может молоть зерно, постоянно вращаясь под действием рециркулирующей воды. Фладд назвал его «водяным винтом». В 1660 году появились первые гравюры по дереву с изображением такой идеи (появление которой приписывают 1618 году).

Стоит ли говорить, что устройство не работало. Тем не менее Фладд не только пытался сломать законы физики своей машины. Он также искал способ помочь фермерам. В то время обработка огромных объемов зерна зависела от потоков. Те, кто жил далеко от подходящего источника текущей воды, были вынуждены загружать свои посевы, тащить их на мельницу, а затем обратно на ферму. Если бы эта машина с вечным двигателем заработала, она существенно упростила жизнь бы бесчисленным фермерам.

Колесо Бхаскары

Одно из самых ранних упоминаний вечных двигателей приходит от математика и астронома Бхаскары, из его трудов 1150 года. Его концепция заключалась в несбалансированном колесе с серией изогнутых спиц внутри, заполненных ртутью. По мере вращения колеса, ртуть начинала двигаться, обеспечивая толчок, необходимый для поддержания вращения колеса.

За многие века вариаций этой идеи было придумано огромное количество. Совершенно понятно, почему она должна работать: колесо, пребывающее в состоянии дисбаланса, пытается привести себя в покой и, в теории, будет продолжать движение. Некоторые дизайнеры так сильно верили в возможность создания такого колеса, что даже спроектировали тормоза на случай, если процесс выйдет из-под контроля.

С нашим современным пониманием силы, трения и работы, мы знаем, что несбалансированное колесо не достигнет желаемого эффекта, поскольку мы не сможем получить всю энергию обратно, не сможем извлекать ее ни много, ни вечно. Однако сама идея была и остается интригующей людей, незнакомых с современной физикой, особенно в индуистской религиозном контексте реинкарнации и круга жизни. Идея стала настолько популярна, что колесообразные вечные двигатели позднее вошли в исламские и европейские писания.

Часы Кокса

Когда знаменитый лондонский часовщик Джеймс Кокс построил свои часы вечного движения в 1774 году, они работали в точности так, как описывала сопроводительная документация, объясняющая, почему эти часы не нуждаются в дозаводке. Документ на шесть страниц пояснял, как часы были созданы на основе «механических и философских принципов».

Согласно Коксу, работающий от алмаза вечный двигатель часов и пониженное внутреннее трение почти до полного его отсутствие гарантировали, что металлы, из которых сконструированы часы, будут распадаться гораздо медленнее, чем кто-либо когда-либо видел. Помимо этого грандиозного заявления, тогда множество презентаций новой технологии включали мистические элементы.

Помимо того что часы Кокса были вечным двигателем, они были гениальными часами. Заключенные в стекле, которое защищало внутренние рабочие компоненты от пыли, позволяя на них также смотреть, часы работали от перемен в атмосферном давлении. Если ртутный столбик рос или падал внутри часового барометра, движение ртути поворачивало внутренние колесики в том же направлении, частично заводя часы. Если часы заводились постоянно, шестерни выходили из пазов, пока цепь не ослаблялась до определенной точки, после чего все вставало на свои места и часы снова начинали заводить себя.

Первый широко принятый экземпляр часов с вечным двигателем был показан самим Коксом в Весеннем саду. Позже он был замечен на недельных выставках Механического музея, а после в Институте Клеркенвилл. На то время показ этих часов был таким чудом, что их запечатлели в бесчисленных художественных произведениях, а к Коксу регулярно приходили толпы желающих поглазеть на его чудесное творение.

Часовщик Пауль Бауманн основал духовное общество Meternitha в 1950-х годах. В дополнение к воздержанию от алкоголя, наркотиков и табака, члены этой религиозной секты живут в самодостаточной, экологически сознательной атмосфере. Чтобы достичь этого, они полагаются на чудесный вечный двигатель, созданный их основателем.

Машина под названием «Тестатика» (Testatika) может использовать якобы неиспользуемую электрическую энергию и превращать ее в энергию для сообщества. По причине закрытости, «Тестатику» не удалось целиком и полностью исследовать ученым, хотя машина и стала объектом короткого документального фильма в 1999 году. Было показано немного, но достаточно, чтобы понять, что секта почти боготворит эту сакральную машину.

Планы и особенности «Тестатики» были ниспосланы Бауманну напрямую Богом, пока он отбывал тюремное наказание за совращение молоденькой девушки. Согласно официальной легенде, он был опечален темнотой своей камеры и нехваткой света для чтения. Затем его посетило загадочное мистичное видение, которое открыло ему секрет вечного движения и бесконечной энергии, которую можно черпать прямо из воздуха. Члены секты подтверждают, что «Тестатика» была послана им Богом, отмечая также, что несколько попыток сфотографировать машину выявили разноцветный ореол вокруг нее.

В 1990-х годах болгарский физик проник в секту, чтобы выведать проект машины, надеясь открыть секрет этого волшебного энергетического устройства миру. Но ему не удалось убедить сектантов. Покончив с собой в 1997 году, выпрыгнув из окна, он оставил предсмертную записку: «Я сделал то, что мог, пусть те, кто смогут, сделают лучше».

Колесо Бесслера

Иоганн Бесслер начал свои исследования в сфере вечного движения с простой концепцией, как у колеса Бхаскары: применим вес к колесу с одной стороны, и оно будет постоянно несбалансированным и постоянно двигаться. 12 ноября 1717 года Бесслер запечатал свое изобретение в комнате. Дверь была закрыта, комната охранялась. Когда ее открыли две недели спустя, 3,7-метровое колесо по-прежнему двигалось. Комнату снова запечатали, схему повторили. Открыв дверь в начале января 1718 года, люди обнаружили, что колесо все еще вертится.

Хотя и став знаменитостью после всего этого, Бесслер не распространялся о принципах работы колеса, отмечая только, что оно полагается на грузы, которые поддерживают его несбалансированным. Более того, Бесслер был настолько скрытным, что когда один инженер прокрался поближе взглянуть на творение инженера, Бесслер психанул и уничтожил колесо. Позже инженер сказал, что не заметил ничего подозрительного. Впрочем, он увидел только внешнюю часть колеса, поэтому не мог понять, как оно работает. Даже в те времена идея вечного двигателя встречалась с некоторым цинизмом. Столетиями раньше сам Леонардо да Винчи насмехался над идеей такой машины.

И все же понятие бесслерова колеса никогда не уходило полностью из поля зрения. В 2014 году уорикширский инженер Джон Коллинз сообщил, что изучал дизайн колеса Бесслера в течение многих лет и был близок к раскрытию его тайны. Однажды Бесслер написал, что уничтожил все доказательства, чертежи и рисунки о принципах работы его колеса, но добавил, что любой, кто будет достаточно умен и сообразителен, сможет понять все наверняка.

НЛО-двигатель Отиса Т. Карра

Включенные в Реестр объектов авторских прав (третья серия, 1958: июль-декабрь) объекты кажутся немного странными. Несмотря на то, что Патентное ведомство США давно постановила, что не будет выдавать никакие патенты на устройства вечного движения, потому что их не может существовать, OTC Enterprises Inc. и ее основатель Отис Карр числятся владельцами «системы бесплатной энергии», «энергии мирного атома» и «гравитационного двигателя».

В 1959 году OTC Enterprises планировала осуществить первый рейс своего «космического транспорта четвертого измерения», работающего на вечном двигателе. И хотя по крайней мере один человек коротко ознакомился с беспорядочными частями хорошо охраняемого проекта, само устройство никогда не раскрывалось и не «отрывалось от земли». Сам Карр был госпитализирован с неопределенными симптомами в день, когда устройство должно было отправиться в свое первое путешествие.

Возможно, его болезнь была умным способом уйти от демонстрации, но ее было недостаточно, чтобы упрятать Карра за решетку. Продав опционы на технологию, которая не существовала, Карр заинтересовал инвесторов проектом, а также людей, которые верили, что его аппарат доставит их на другие планеты.

Чтобы обойти патентные ограничения своих безумных проектов, Карр запатентовал все как «развлекательное устройство», имитирующее поездки во внешний космос. Это был американский патент # 2 912 244 (10 ноября 1959 года). Карр утверждал, что его космический аппарат работает, потому что один уже улетел. Двигательной установкой была «круговая фольга свободной энергии», которая обеспечивала бесконечную поставку энергии, необходимой для доставки аппарата в космос.

Разумеется, странность происходящего открыла дорогу теориям заговора. Некоторые люди предположили, что Карр действительно собрал свой вечный двигатель и летающий аппарат. Но, конечно, его быстро прижало американское правительство. Теоретики не могли договориться, не то правительство не хочет раскрывать технологию, не то хочет использовать ее самостоятельно.

«Перпетуум-мобиле» Корнелиуса Дреббеля

Самое странное в вечном двигателем Корнелиуса Дреббеля то, что хотя мы и не знаем, как и почему он работал, вы точно видели его чаще, чем думаете.

Впервые Дреббель продемонстрировал свою машину в 1604 году и поразил всех, включая английскую королевскую семью. Машина была чем-то вроде хронометра; она никогда не нуждалась в заводке и показывала дату и фазу Луны. Движимая изменениями в температуре или в погоде, машина Дреббеля также использовала термоскоп или барометр, подобно часам Кокса.

Никто не знает, что обеспечивало движение и энергию дреббелевскому устройству, поскольку он говорил об обуздании «огненного духа воздуха», как заправский алхимик. В то время мир по-прежнему мыслил терминологией четырех элементов, и сам Дреббель экспериментировал с серой и селитрой.

Как указано в письме от 1604 года, самое раннее известное представление устройства показало центральный шар, окруженный стеклянной трубкой, заполненной жидкостью. Золотые стрелочки и отметины отслеживали фазы Луны. Другие изображения были более сложными, показывая машину, украшенную мифологическими существами и украшениями в золоте. Perpetuum mobile Дреббеля также появился в некоторых картинах, в частности кистей Альбрехта и Рубенса. На этих картинах странная тороидальная форма машины вообще ничем не напоминает сферу.

Работа Дреббеля привлекла внимание королевских судов по всей Европе, и он гастролировал по континенту в течение некоторого времени. И, как это часто бывает, умер в нищете. Будучи необразованным сыном фермера, он получил покровительство Букингемского дворца, изобрел одну из первых подводных лодок, ближе к старости стал завсегдатаем пабов и в конце концов завязался с несколькими проектами, подпортившими его репутацию.

Антигравитационная машина Дэвида Хамела

В своей самопровозглашенной «невероятно истинной истории жизни», Дэвид Хамел утверждает, что является обычным плотником без формального образования, который был избран стать хранителем машины вечной энергии и космического аппарата, который с ее помощью должен работать. После встречи с инопланетянами с планеты Кладен, Хамел заявил, что получил информацию, которая должна изменить мир - если только люди ему поверят.

Хотя все это немного обескураживает, Хамел говорил, что его вечный двигатель использует те же энергии, что и пауки, прыгающие с одной паутинки на другую. Эти скалярные силы сводят на нет притяжение гравитации и позволяют создать аппарат, который позволит нам воссоединиться с нашими кладенскими родственниками, которые и снабдили Хамела нужной информацией.

Если верить Хамелу, он уже построил такое устройство. К сожалению, оно улетело.

Проработав 20 лет, чтобы построить свое межзвездное устройство и двигатель, используя серию магнитов, он наконец включил его, и произошло вот что. Исполнившись свечения красочных ионов, его антигравитационная машина поднялась в воздух и полетела над Тихим океаном. Чтобы избежать повторения этого трагического события, Хамел строит свою следующую машину из материалов потяжелее, вроде гранита.

Чтобы понять принципы, лежащие в основе этой технологии, Хамел говорит, что вам нужно смотреть на пирамиды, изучать некоторые запрещенные книги, принять присутствие невидимой энергии и представлять скаляры и ионосферу почти как молоко и сыр.

Давно установлено, что изобретение вечного двигателя невозможно. В широком смысле, под вечным двигателем подразумевают механизм, безостановочно движущий сам себя. Но это далеко не достаточное определение. Благодаря многовековым бесплодным попыткам создания чудо-машины сегодня можно определить точно само понятие «вечного двигателя» и причины его неосуществимости. Более того, такие попытки оставили значительный след в истории и подтвердили существование важнейших законов физики. Каких, рассмотрим и проанализируем ниже.

Определение и классификация вечных двигателей

Итак, вечный двигатель, как уже известно - устройство воображаемое. По характеру совершаемой работы можно классифицировать следующим образом:

  1. Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) - непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне. Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях.
  2. Вечный двигатель второго рода (естественный) - тепловая машина, которая в результате совершения цикла полностью преобразует тепло, получаемое от какого- либо одного «неисчерпаемого» источника (океана, атмосферы и т. п.), в работу. Связываются с циклически повторяющимися природными явлениями или с принципами небесной механики.

Такая классификация является распространенной и встречается в старой научной литературе. У более поздних исследователей существует еще одно определение. Оно исходит из представления об идеальной машине, работающей без потерь и превращающей всю сообщенную энергию в полезную работу или в какой-либо другой вид энергии.

К этим определениям ученые разных времен шли долгим путем. Они подвергали их обстоятельному анализу и были единодушны далеко не всегда. Проблема заключалась в том, можно ли считать вечным двигателем только ту машину, которая, будучи собрана полностью, немедленно начнет работать сама по тебе, или допустимо сообщить устройству начальный двигательный импульс. Спор велся и о том, относится ли к основным признакам вечного двигателя условие, чтобы он, будучи приведен в движение, одновременно совершал некоторую полезную работу.

Причины возникновения идеи создания

Первое упоминание о вечном двигателе относится к 1150 г. Но означает ли это, что античные механики не интересовались вечным движением? Наоборот, это являлось одной из тех традиционных проблем, которым в связи с исследованием физических явлений наука уделяла много внимания. Но при исследовании условий, определяющих круговое движение тел, греки пришли к выводам, теоретически исключающим всякую возможность существования на Земле искусственно созданного вечного движения. Например, Аристотель утверждал, что движение тел ускоряется по направлению к ее центру. О телах с действительно круговым движением он пишет: «Они не могут быть ни тяжелыми, ни легкими, так как не способны приближаться к центру или удаляться от него естественным или вынужденным образом». Такому условию удовлетворяют только небесные тела.

Но родоначальником идеи вечного двигателя считают индийского поэта, математика и астронома Бхаскара Ачарью (1114-1185), описавшего в своем стихотворении некое вечно двигающееся колесо. Заметим, что за основу взято тело круглой формы. Согласно древнеиндийской философии, регулярно повторяющиеся события, составляющие круговой цикл, являются для него символом вечности и совершенства. То есть прародители идеи вечного движения были мотивированы не практическими, а религиозными потребностями. Своего апогея идея вечного двигателя достигает в средние века в Европе, в период интенсивного строительства храмов, кафедральных соборов и княжеских дворцов, и тогда уже создателей, конечно, интересует практическое применение машины.

Некоторые модели вечных двигателей первого рода

Колесо с неуравновешенными грузами

Рисунок 1

Рисунок 2

Рисунок 3

Вот модель вечного двигателя Бхаскары (Рис. №1) с прикрепленными наискось по внутренней стороне окружности длинными узкими сосудами, наполовину заполненными ртутью. Бхаскара обосновывает вращение колеса следующим образом: «Наполненное так жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе».

Еще две модели, аналогичные по принципу действия, изобретенные в средневековой Европе. Роль сосудов, частично наполненных ртутью, играют выпукло­вогнутые секторы внутри колеса, внутри которых находятся тяжелые шары (Рис. №2) или подвижно закрепленные на внешней части колеса стержни с грузами на концах (Рис. №3).

Принцип действия данных двигателей заключается в создании постоянного неравновесия сил тяжести на колесе, вследствие которого колесо должно вращаться. Рассмотрим, почему этот расчет не оправдывается на примере обычного колеса. Здесь предполагается, что работу совершает сила тяжести, то есть в нормальных условиях (при небольших расстояниях и вблизи поверхности Земли) она постоянна и направлена всегда в одну и ту же сторону.

Рисунок 4

F T - вес груза, F P - сила, с которой рычаг воздействует на шарнир (компенсируется силой реакции опоры), F B - поворачивающая сила, R - расстояние от шарнира (оси поворота) до траектории центра масс груза.

Когда рычаг стоит строго вертикально вверх, вес груза передается на шарнир и компенсируется реакцией опоры. Сила направлена по нормали к окружности, тангенциальная составляющая

отсутствует, значит, момент сил равен нулю. Это положение называется верхней мёртвой точкой (ВМТ). Если рычаг отклоняется, реакция опоры уже не компенсирует вес, появляется тангенциальная составляющая силы, а нормальная начинает уменьшаться. Так будет продолжаться только до тех пор, пока рычаг не примет горизонтальное положение. Когда момент сил достигнет максимального значения, рычаг снова начнет действовать на груз, нормальная сила поменяет свой знак относительно рычага. Тангенциальная сила начнёт уменьшаться, до момента, когда рычаг не окажется в положении вертикально вниз (нижняя мёртвая точка (НМТ)).

Таким образом, как видно из Рис. №4, половину рабочего цикла груз ускоряется, двигаясь из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ), и половину - замедляется. Сделав несколько оборотов, колесо с неуравновешенными грузами достигнет состояния равновесия.

Цепь на наклонной плоскости

Рисунок 5

Еще один тип механических вечных двигателей - тяжелая цепь, переброшенная более длинной стороной через систему блоков. Теоретически предполагалось, что часть, на которой находится большее количество звеньев, начнет соскальзывать с наклонной плоскости, вследствие чего замкнутая цепь будет беспрерывно двигаться. Однако известно, что цепь будет покоиться. Этот тип двигателей интересен в первую очередь тем, что из невозможности его вечного движения инженер, механик и математик Симон Стевин (1548-1620) доказал закон равновесия тела на наклонной плоскости. Одна цепь тяжелее другой во столько же раз, во сколько раз большая грань (АВ на Рис.№5) призмы длиннее короткой (ВС на Рис.№5). Отсюда следует, что два связанных груза уравновешивают друг друга на наклонных плоскостях, если их массы пропорциональны длинам этих плоскостей.

Похожий по принципу механизм (Рис. №6): тяжелая цепь перекинута через колеса так, что правая ее половина всегда длиннее левой. Следовательно, она должна падать вниз, приводя цепь во вращение. Но цепь в левой части натянута отвесно, а правая - под некоторым углом и изогнуто. Аналогично вечное движение и этого механизма невозможно.

Рисунок 6

Гидравлический вечный двигатель с винтом Архимеда

В подавляющем большинстве вечных гидравлических двигателей изобретатели пытались использовать известный со времен Древней Греции механизм - винт Архимеда - полую трубку со спиралевидной плоскостью внутри, предназначенную для подъема воды из сосуда в сосуд наибольшей высоты.

Рисунок 7

Жидкость из сосуда, поднимается фитилями сначала в верхний сосуд, оттуда другими фитилями еще выше, верхний сосуд имеет желоб для стока, которое падает на лопатки колеса, приводя его во вращение. Оказавшаяся в нижнем ярусе жидкость снова поднимается по фитилям до верхнего сосуда. Таким образом, струя, стекающая по желобу на колесо, не прерывается, и колесо вечно должно находиться в движении (Рис. №7).

Только колесо этой машины никогда не станет вращаться, поскольку в верхнем сосуде не окажется воды. Это произойдет потому, что капиллярные силы вызванные искривлением поверхности жидкости, хотя и позволяют преодолеть силу тяжести, поднимая жидкость в ткани фитиля, но они и удерживают ее в порах ткани, не позволяя ей вытечь из них.

Сосуд Денни Папена

Рисунок 8

Проект гидравлического вечного двигателя Денни Папена - сосуд, сужающийся в трубку и загнутый таким образом, что свободный конец трубки с меньшим радиусом расположен в пределах большого «горла» сосуда (Рис. №8). Автор предполагал, что вес воды в более широкой части сосуда будет превосходить вес жидкости, находящейся в трубке, в более узкой части. Таким образом, должна была происходить циркуляция жидкости за счет разности давлений. На самом деле в данном случае работает основной закон гидростатики: давление, оказываемое на жидкость, передается без изменения по всем направлениям. Поверхность жидкости в тонкой трубке установится на том же уровне, что и в сосуде, как в любых сообщающихся сосудах.

Ранее это двигателя были предложены похожие сосуды, иначе ориентированные в пространстве. В них за основу брался принцип действия сифона: в нем (в изогнутой трубке с коленами разной длины, по которой жидкость поступает из сосуда с более высоким в сосуд с более низким уровнем жидкости) работа, затрачиваемая на подъем жидкости, производится атмосферным давлением. В то же время, чтобы жидкость могла протекать через сифон, максимальная высота его изгиба не должна превосходить высоту столба жидкости, уравновешиваемого давлением внешнего воздуха. Для воды эта высота при нормальном барометрическом давлении составляет примерно 10 м. - этот факт не учитывался и приводил к неверным выводам о вечном движении такого двигателя.

Другие гидравлические двигатели

Рисунок 9

Среди множества проектов вечного двигателя было немало основанных на законе Архимеда. Один из таких проектов выглядит следующим образом: высокий сосуд (20 м), наполненный водой, имеет расположенные на одной грани в разных ее концах шкивы, через которые перекинут прочный бесконечный канат с четырнадцатью закрепленными полыми ящиками кубической формы. Ящики одинаковы, равноудалены, водонепроницаемы и имеют стороны в 1 м (Рис. №9).

Действительно, ящики, находящиеся в воде, будут стремиться всплыть вверх. На них действует сила, равная весу воды, вытесняемой ящиками.

Но даже при условии, что данный канат бесконечен, эффект не оправдывается, потому что чтобы канат вращался, ящики должны входить в сосуд именно со дна, а для этого они должны преодолеть давление столба воды, которое окажется значительно больше силы Архимеда.

Рисунок 10

Упрощенный вариант вечного двигателя гидравлического типа (Рис.№10), идея которого исходит из грубого нарушения толкования закона Архимеда. Погруженная в воду часть деревянного барабана, согласно закону Архимеда, подвергается действию выталкивающей силы. Конечно, колесо вращаться не будет, потому что сила будет направлена не вверх (как предполагалось изобретателем), а к центру колеса.

Магнитный вечный двигатель

Рисунок 11

Несложная, но оригинальная модель вечного двигателя с магнитами. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один прямой, установленный выше, другой изогнутый (Рис. №11). Железный шарик, помещенный на верхний желоб, будет притягиваться магнитом, затем на пути он попадет в отверстие, скатится по нижнему желобу и снова перейдет на верхний желоб.

Однако, если магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик не притянется вовсе.

Вечный двигатель первого рода в противоречии с законом сохранения энергии

Окончательное утверждение закона сохранения энергии в 40-70 годы XIX века произошло на основе работ Сади Карно, Роберта Майера, Джеймса Джоуля и Германа Гельмгольца, которые показали связь между различными формами энергии (механической, тепловой, электрической и др.). Закон сохранения энергии формулируется в следующем виде: в изолированной системе энергия может переходить из одной формы в другую, но общее количество ее остается постоянным.

Как правило, невозможность вечного двигателя рассматривают как следствие закона сохранения энергии. Рассуждения Майера и опыты Джоуля доказали эквивалентность механической работы и теплоты, показав, что количество выделяемой теплоты равно совершенной работе и наоборот, формулировку же в точных терминах закону сохранению энергии первым дал Гельмгольц. В отличие от своих предшественников, он связывал закон сохранения энергии с невозможностью существования вечных двигателей. Принцип невозможности вечного двигателя был положен Майером и Гельмгольцем в основу анализа различных превращений энергии. Макс Планк в работе «Принцип сохранения энергии» сделал специальный акцент на эквивалентности (а не причинно-следственной связи) принципа невозможности вечного двигателя и принципа сохранения энергии.

В термодинамике исторически закон сохранения формулируется в виде первого начала термодинамики: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Вечные двигатели второго рода

Классический вечный двигатель второго рода предусматривает возможность накопления тепла за счет работы, затраты которой меньше полученного тепла, и использования части этого тепла для повторного совершения работы в новом цикле. Таким образом, должен образоваться избыток работы. Другой вариант этого двигателя подразумевает упорядочение хаотического теплового движения молекул, в результате чего возникает направленное движение вещества, сопровождаемое понижением его термодинамической температуры. Широко известных проектов таких двигателей изобретено не так много, как, например, двигателей первого рода, и информация о них не достаточна для описания. Подавляющее большинство идей таких машин являются абсурдными и противоречивыми, либо относятся к классу мнимых вечных двигателей (по сути, не являются вечными), обладают низким КПД.

Сформулированное Рудольфом Клаузиусом второе начало термодинамики однозначно утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации вечного двигателя второго рода, работа которого не противоречила бы закону сохранения энергии. Например, работа двигателя корабля за счет охлаждения воды океана (доступного и практически неисчерпаемого резервуара внутренней энергии) не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит второму началу термодинамики. В реальном тепловом двигателе процесс превращения теплоты в работу сопряжен с передачей определенного количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со вторым началом термодинамики.

Мнимый вечный двигатель

Рисунок 12

В 60-х гг. XX в. мировую сенсацию произвела игрушка, получившая в СССР название «вечно пьющая птичка» или «птичка Хоттабыча». Тонкая стеклянная колба с горизонтальной осью посередине впаяна в небольшую емкость. Свободным концом колбочка почти касается ее дна. В колбе находится определенное количество эфира (в нижней части), верхняя пустая часть колбы обклеена снаружи тонким слоем ваты. Перед игрушкой ставят сосуд с водой и наклоняют ее, заставляя «попить» (Рис.№12). Затем механизм работает самостоятельно: несколько раз в минуту наклоняется к сосуду с водой, пока вода не кончится.

Механизм такого явления понятен: жидкость в нижней полости испаряется под влиянием комнатного тепла, давление растет и вытесняет жидкость в трубочку. Верхняя часть конструкции перевешивает, наклоняется, пар перемещается в верхний шарик. Давление выравнивается, жидкость возвращается в нижний объем, который перевешивает и возвращает «птичку» в первоначальное положение.

На первый взгляд здесь нарушается второе начало термодинамики: перепад температур отсутствует, машина только забирает тепло из воздуха. Но когда колба достигает сосуда с водой, вода из мокрой ваты интенсивно испаряется, охлаждая верхний шарик. Возникает разность температур верхнего и нижнего сосудов, за счёт которой и происходит движение. Если испарение прекратится (высохнет вата или влажность воздуха достигнет точки росы, то есть температуры, до которой должен охладиться воздух, чтобы содержащийся в нем водяной пар достиг состояния насыщения и начал конденсироваться в росу), машина в полном согласии со вторым началом термодинамики перестанет двигаться. Мощность такого двигателя очень низка из-за незначительной разности температур и давлений, при котором «птичка» работает.

Вечные двигатели как коммерческие проекты

Вечные двигатели, с древнейших времен окутанные тайной изобретения и действия, несомненно, создавались не только для использования в практическом плане. Во все времена были мошенники и фантазеры, намеревавшиеся извлечь не только энергию большую, чем 100%.

Одна из самых известных «афер века» - вечный двигатель Иоганна Бесслера (1680-1745).

Рисунок 13

Рисунок 14

Под псевдонимом Орфиреус этот саксонский инженер 17 ноября 1717 года в присутствии известных физиков продемонстрировал машину с диаметром вала больше 3,5 м. Двигатель пустили в ход и заперли в комнате, а проверив через полтора месяца, убедились, что колесо двигателя вращается с прежней скоростью.

Когда то же самое произошло еще через два месяца, слава Бесслера прогремела по всей Европе. Изобретатель соглашался продать машину Петру I , но этого не произошло. Однако это не помешало жить Бесслеру безбедно на средства, полученные путем демонстрации двигателя. Двигатель представляет собой большое колесо, вращающееся и поднимающее при этом тяжелый груз на значительную высоту (Рис. №13).

Изобретение вызвало множество споров и нерешенных вопросов. Самый главный из них - принцип действия - не был известен широкой публике. Поэтому недоверчивые скептики заключили, что секрет заключается в том, что искусно спрятанный человек тянет за веревку, намотанную, незаметно для наблюдателя, на скрытой части оси колеса. И их ожидания оправдались: вскоре служанка Бесслера раскрыла тайну:

двигатель действительно работал только с помощью третьих лиц (Рис. №14).

Еще один известный случай использования вечного двигателя «не по назначению»: в одном из городов с целью привлечения клиентов у одного кафе было установлено «вечно» вращающееся колесо, которое, конечно, запускалось с помощью механизма.

Некоторые разработчики идей вечных двигателей в хронологическом порядке:

  1. Бхаскара Ачарья (1114-1185), поэт, астроном, математик.
  2. Виллар де Оннекур (XIII век), архитектор.
  3. Николай Кузанский (1401-1464), философ, теолог, церковно-политический деятель.
  4. Франческо ди Джорджо (1439-1501), художник, скульптор, архитектор, изобретатель, военный инженер.
  5. Леонардо да Винчи (1452-1519), художник, скульптор, архитектор, математик, физик, анатом, естествоиспытатель.
  6. Джамбаттиста Порта (1538 - 1615), философ, оптик, астролог, математик, метеоролог.
  7. Корнелиус Дреббель (1572 - 1633), физик, изобретатель.
  8. Атанасиус Кирхер (1602-1680), физик, лингвист, теолог, математик.
  9. Джон Уилкинс (1614-1672), философ, лингвист.
  10. Денни Папен (1647-1712), математик, физик, изобретатель.
  11. Иоганн Бесслер (1680-1745), инженер-механик, врач, мошенник.
  12. Дэвид Брюстер (1781-1868), физик.
  13. Вильгельм Фридрих Оствальд (1853-1932), физик, химик, философ-идеалист.
  14. Виктор Шаубергер (1885-1958), изобретатель.

Заключение

В 1775 году Французская Академия приняла решение не рассматривать предложения вечных двигателей, выдвинув окончательный вердикт: построение вечного двигателя абсолютно невозможно. За всю историю вечного двигателя было изобретено более 600 проектов, причем большинство из них пришлось на время, когда стали известны законы термодинамики и сохранения энергии.

Конечно, усилия многочисленных создателей вечных двигателей не пропали даром. Пытаясь сконструировать невозможное, они нашли немало любопытных технических решений, придумали механизмы и устройства, которые до сих пор применяются в машиностроении. В бесплодных поисках вечного движения родились основы инженерной науки и подтвердились законы, отрицающие его существование.

Учёные и не только много лет пытались создать вечный двигатель. Не все попытки были удачны, но некоторые опредёленно заслуживают внимания. Многие интересуются технологией неиссякаемой энергии и хотят попробовать сделать вечный двигатель своими руками. Всегда интересно узнать о том, что собой представляет вечный двигатель, возможно ли его собрать и как это сделать.

Что это такое

Любой прибор, который работает за счёт какой-либо энергии, перестанет работать, если его отключить от источника этой самой энергии. Вечный двигатель решает эту проблему: включив его однажды можно не беспокоиться, что в нём сядет батарейка или закончится бензин, и он выключится. Идея создания такого устройства довольно долго будоражила умы людей, и попыток создания вечного двигателя было очень много.

У такого устройства должен быть коэффициент полезного действия больше ста процентов. То есть количество производимой энергии должно быть больше, чем количество полученной, чтобы двигатель мог поддерживать себя в рабочем состоянии и при этом выдавать некоторое количество энергии для сторонних задач.

Поскольку такая система должна работать вечно (или хотя бы очень долго), то к ней предъявляются особые требования:

  • Постоянная работа. Это логично, ведь если двигатель остановится, то не такой уж он и вечный.
  • Как можно более долговечные детали. Если наш двигатель должен работать вечно, то его отдельные детали должны быть максимально износостойкие.

Научные гипотезы

Научное общество не отрицает создание такого устройства. Правда, в глазах учёных оно представляет собой не просто набор движущихся деталей или колбочек со ртутью внутри. Это должно быть более сложное устройство, работающее на энергии эфира или вакуума. Эфир - это некая всепроникающая среда, которая колеблется и генерирует электромагнитные волны. Существование эфира, кстати, не доказано.

Ни для кого не секрет, что в нашей вселенной действуют гравитационные силы. Сейчас они находятся в покое, так как уравновешены друг другом. Но если нарушить равновесие, все эти силы придут в движение . Подобный принцип теоретически можно использовать в гравитационном вечном двигателе. Правда, осуществить это пока никому не удалось.

Магнитно-гравитационный двигатель

Здесь все немного проще, чем в предыдущем варианте. Для создания такого устройства нужны постоянные магниты и грузы определённых параметров. Работает это так: в центре вращающегося колеса находится основной магнит, а вокруг него (на краях колеса) расположены вспомогательные магниты и грузы. Магниты взаимодействуют друг с другом, а грузы находятся в движении и перемещаются то ближе к центру вращения, то дальше. Таким образом центр массы смещается, и колесо вращается.

Самый простой вариант

Для его создания понадобятся простые материалы:

  • Бутылка из пластика.
  • Тонкие трубки.
  • Куски дерева (доски).

Бутылку нужно разрезать на две части по горизонтали. В нижнюю часть вставить деревянную перегородку, в которой заранее проделать отверстие и придумать затычку для него. После берётся тонкая трубка и устанавливается таким образом, чтобы она проходила снизу вверх через перегородку . Любые зазоры в составных частях нужно уплотнить, предотвратив поступление воздуха в нижнюю часть бутылки.

Через отверстие в дереве нужно налить в нижнюю часть легкоиспаряющейся жидкости (бензин, фреон). При этом уровень жидкости не должен доставать не до дерева, а до среза трубки. Потом затычка закрывается, а сверху наливается немного той же жидкости. Теперь следует закрыть эту конструкцию верхней частью бутылки и поставить в тёплое место. Через время из верхней части трубки начнёт капать жидкость.

Все дело в том, что жидкость просачивается сквозь дерево. Воздух внутри оказывается «заперт» и начинает нагревать жидкость вокруг себя. Она, в свою очередь, испаряется и выходит вверх, охлаждается и оседает на дереве, что замыкает круг. Таким образом жидкость просто циркулирует внутри системы.

Водяной вариант вечного двигателя

Это довольно простая конструкция, которую можно построить даже в домашних условиях. Понадобится пара колб, клапаны для них, одна большая ёмкость с водой и несколько трубок. Ориентируясь по картинке, можно собрать такое устройство - оно будет перекачивать воду.

Эта тема очень интересна и увлекательна . Учёные всего света ломали голову над этим мифическим устройством. Было много шарлатанов, которые выдавали свои хитроумные машины за вечноработающие двигатели. На сегодняшний день никто не смог создать такое устройство. Многие учёные отрицают возможность существования такой машины, так как она нарушает фундаментальные законы физики.