Использование реактивных двигателей. История создания и принцип работы турбореактивного двигателя Что такое реактивный двигатель по физике

Реактивное движение - это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя. Принцип работы его основан именно на этой силе. Как же действует такой двигатель? Попробуем разобраться.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки - Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски - революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

Как действует реактивная сила?

Чтобы понять принцип работы реактивного двигателя, нужно понимать, как действует эта сила.

Итак, представим выстрел из любого огнестрельного оружия. Это наглядный пример действия реактивной силы. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

А теперь представим процесс зажигания горючей смеси: он проходит постепенно и непрерывно. Именно так выглядит принцип работы прямоточного реактивного двигателя. Подобным образом работает ракета с твердотопливным реактивным двигателем - это наиболее простая из его вариаций. С ней знакомы даже начинающие ракетомоделисты.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели, принцип работы которых был уже более совершенен, требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах, запускающих ракеты, выводящие шаттлы на орбиту, сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

Теперь стоит разобраться с принципом работы реактивного двигателя. Для этого можно рассмотреть классику - жидкостные двигатели, которые практически не изменились со времен Циолковского. В этих агрегатах применяется топливо и окислитель.

В качестве последнего используется жидкий кислород либо же азотная кислота. В качестве горючего применяют керосин. Современные жидкостные двигатели криогенного типа потребляют жидкий водород. Он при окислении кислородом увеличивает удельный импульс (на целых 30 процентов). Идея о том, что можно использовать водород, также родилась в голове Циолковского. Однако на тот момент по причине чрезвычайной взрывоопасности пришлось искать другое горючее.

Принцип работы состоит в следующем. Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания. Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее, подогретое стенками, попадет через огромное количество форсунок в зону воспламенения. Струя, которая формируется при помощи сопла, вырывается наружу. За счет этого и обеспечивается толкающий момент.

Кратко принцип работы реактивного двигателя можно сравнить с паяльной лампой. Однако последняя устроена значительно проще. В схеме ее работы нет различных вспомогательных систем двигателя. А это компрессоры, нужные для создания давления впрыска, турбины, клапана, а также прочие элементы, без которых реактивный двигатель просто невозможен.

Несмотря на то что жидкостные двигатели потребляют очень много горючего (расход топлива составляет примерно 1000 грамм на 200 килограммов груза), их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций, а также других аппаратов космического назначения.

Устройство

Устроен типичный реактивный двигатель следующим образом. Основные его узлы - это:

Компрессор;

Камера для сгорания;

Турбины;

Выхлопная система.

Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача - всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.

Мотор самолета

В самолетах также используются эти двигатели. Так, например, в огромных пассажирских лайнерах устанавливают турбореактивные агрегаты. Они отличаются от обычных наличием двух баков. В одном находится горючее, а в другом - окислитель. В то время как турбореактивный мотор несет только топливо, а в качестве окислителя используется воздух, нагнетаемый из атмосферы.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть - это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй - к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления. В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления. Затем газы проходят через турбину низкого давления. Последняя приводит в действие вентилятор и, наконец, газы попадают наружу, создавая тягу.

Синхронные РД

Это электрические моторы. Принцип работы синхронного реактивного двигателя аналогичен работе шагового агрегата. Переменный ток подается на статор и создает магнитное поле вокруг ротора. Последний вращается за счет того, что пытается минимизировать магнитное сопротивление. Эти моторы не имеют отношения к освоению космоса и запуску шаттлов.

Толмачёв Александр

сообщение (сопровождается презентацией) к уроку физики по теме "Реактивное движение"

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

«МОУ АЗЕЙСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА» РЕАКТИВНЫЕ ДВИГАТЕЛИ. Выполнил: Толмачёв Александр.

РЕАКТИВНЫЕ ДВИГАТЕЛИ.

Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. - преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Тяга - сила, с которой Р. д. воздействует на аппарат, оснащенный этим Р. д., - определяется по формуле P = mWc+ Fc (pc - pn),

Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах.

Предварительный просмотр:

Реактивный двигатель

Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела;в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.; сам Р. д. - преобразователь энергии. Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных Р. д. в качестве первичной чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели - пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33. В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

Р. д. имеют различное назначение и область их применения постоянно расширяется. Наиболее широко Р. д. используются на летательных аппаратах различных типов. Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Основные характеристики Р. д.: реактивная тяга, удельный импульс - отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 сек, или идентичная характеристика - удельный расход топлива (количество топлива, расходуемого за 1 сек на 1 н развиваемой Р. д. тяги), удельная масса двигателя (масса Р. д. в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для многих типов Р. д. важными характеристиками являются габариты и ресурс.

Тяга - сила, с которой Р. д. воздействует на аппарат, оснащенный этим Р. д., - определяется по формуле

P = mWc+ Fc(pc - pn),

где m - массовый расход (расход массы) рабочего тела за 1 сек; Wc - скорость рабочего тела в сечении сопла; Fc - площадь выходного сечения сопла; pc - давление газов в сечении сопла; pn - давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга Р. д. зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащенного Р. д., над уровнем моря, если речь идёт о полёте в атмосфере Земли. Удельный импульс Р. д. прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Тяга существующих Р. д. колеблется в очень широких пределах - от долей гс у электрических до сотен тс у жидкостных и твёрдотопливных ракетных двигателей. Р. д. малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости. Максимальная тяга ВРД достигает 28 тс (1974). Эти Р. д., использующие в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Историю и перспективы развития отдельных видов Р. д. и лит. см. в статьях об этих двигателях.

Впервые самолет с турбореактивным двигателем (ТРД ) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Вконтакте