TCS в автомобиле: что это такое. Как работает антипробуксовочная система Как работает trc

Узнайте, как работает противобуксовочная система автомобиля и, какие её виды существуют. Схемы и видео про принцип работы системы.


Содержание статьи:

Примерно уже 20 лет, на автомобили устанавливают различные системы безопасности, следят за безопасностью торможения и разгона авто. На сегодняшний день, такие технологии есть у любого современного автомобиля.

Пройдя большой отрезок времени, и непростой путь, от простых систем, вплоть до целых комплексных систем, которые объединяются в несколько противобуксовочных систем.

Что из себя представляет антипробуксовочная система

Антипробуксовочная система, или сокращённо АПС ещё носит название «противобуксовочная (ПБС)», на английском языке можно увидеть также два названия этой технологии - Dynamic Traction Control (DTC) и Traction control system (TCS), на немецком её именуют как Antriebsschlupfregelung (ASR).

Антипробуксовочная система является вторичным элементом безопасности, который работает с антиблокировочной тормозной системой ABS, на легковых, грузовых автомобилях и внедорожниках. Эта электрогидравлическая система автомобиля, упрощает управление авто при влажной дороге (она предотвращает потерю сцепления колёс с дорогой благодаря постоянному контролю за буксованием ведущих колёс машины). В зависимости от фирмы производителя автомобиля, антипробуксовочная технология имеет следующие наименования (виды):

  • ASR - установлен на автомобилях таких фирм, как Mercedes (а также ETS), Volkswagen, Audi.
  • ASC - установлен на автомобилях BMW.
  • A-TRAC и TRC - на автомобилях Toyota.
  • DSA - имеется на автомобилях Opel.
  • DTC - монтирована на автомобилях BMW.
  • ETC - установлен на автомобилях Range Rover.
  • STC - на автомобилях Volvo.
  • TCS - установлен на автомобилях Honda.
Не принимая во внимание большое количество наименований, по конструкции и принципу работы противобуксовочные системы схожи между собой, поэтому давайте рассмотрим принцип работы самой распространенной из них, а именно ASR, установленной в авто Mercedes, Volkswagen или Audi.

Система ASR и нюансы её работы

ASR помогает предотвратить потерю тяги в колесах транспортного средства с помощью электрогидравлической системы, которая контролирует двигатель и тормоза в неблагоприятных дорожных условиях или если водитель использует чрезмерное ускорение и колеса начинают скользить на асфальте. Система ASR помогает не делать ошибок водителю в неблагоприятных дорожных условиях и помогает водителю сохранить контроль над автомобилем.

Профессиональные водители жалуются, что АПС ASR влияет на производительность автомобиля, но это стандартное оборудование в высокопроизводительных транспортных средствах помогает начинающим и водителям, которые часто переоценивают свою способность контролировать автомобиль в неблагоприятных погодных условиях, и восстанавливает контроль водителя в непредвиденных обстоятельствах.

Технология ASR есть в большинстве автомобилей и мотоциклов примерно с 1992 года. И ведет свою историю с начала 1930-х, когда Porsche разработала дифференциал повышенного трения, что позволяет одному колесу вращаться чуть быстрее, чем другим, чтобы улучшить сцепление с дорогой. Система ASR тесно связана с ABS. С первых пользователей ASR, который уже дополняла система ABS, был BMW в 1979 году.

Как устроена система ASR

Основные функции и назначения ПБС

Система ASR построена на антиблокировочной системе тормозов ABS. Функции, реализованные в ASR - это блокировка дифференциала и управление крутящим моментом.

Как работает антипробуксовочной системы и её нюансы


Блок управления двигателем контролирует вращение колес и после включения зажигания, транспортное средство начинает двигаться. Мониторы компьютера сравнивают ускорение и скорость вращения ведущих колес с не силовыми колесами. Компьютер активизирует ASR, когда вращение колес превышает порог скольжения. Система ASR активирует дифференциал тормозного клапана для контроля тормозного цилиндра, и крутящий момент двигателя применяется к заторможенному колесу. Противобуксовочная технология переходит от дифференциального управления тормозом к управлению двигателем, чтобы уменьшить мощность двигателя. В некоторых системах ASR задерживает зажигания или уменьшает подачу топлива к конкретным цилиндров для снижения мощности на скоростях выше 80 км в час. На панели приборов можно увидеть вспышки контрольной лампы, при срабатывании системы. Также данную технологию можно отключить.

Описание других противобуксовочных систем автомобилей


Система TRC - является антипробуксовочной системой, разработанной Toyota и применяется на авто марок Toyota и Lexus. Считается самой современной и эффективной антипробуксовочной системой на сегодняшний день.

Принцип работы TRC, такой же, как и ASR, но к работе подключаются все технологии безопасности автомобиля.

Видео про принцип работы системы регулирования тягового усилия TRC

Плюсы в работе антипробуксовочной системы автомобиля


К преимуществам этой технологии можно отнести следующие характеристики:
  • Уменьшение возможностей повредить покрышки.
  • Увеличение ресурсов двигателя.
  • Безопасность движения в поворотах, при влажной дороге.
  • Безопасность движения на зимней дороге.
  • Безопасное и комфортное начало движение автомобилем на мокрой, зимней и прочей дороге плохого сцепления.
  • Позволяет экономить топливо.
  • Хорошая управляемость и предсказуемость на дороге, что помогает комфортно чувствовать себя на трассе.
Видео обзор принципа работы:

Уже вот почти четверть века на легковые и грузовые автомобили, оснащенные передовыми системами безопасности, устанавливают противобуксовочные системы. Из названия этой системы понятно, что она не дает колесам автомобиля пробуксовывать в нужный момент. Антипробуксовочная система автомобиля является второй системой безопасности после АБС (антиблокировочная система). Эти две новейшие системы работают в паре и не дают заблокироваться или забуксовать колесам. Водители, которых заинтересовали электронные системы безопасности, часто хотят разобраться, как работает антипробуксовочная система.

Противобуксовочная система сокращенно (ПБС) в переводе на английский звучит как Traction control system (TCS). Немецкие автомобильные инженеры именуют ее Antriebsschlupfregelung (ASR). Данные системы включают в себя комплекс мер по предотвращению букса на дорогах с недостаточным сцеплением.

Программы, запрограммированные в мозгах автомобиля, не являются обязательными и их можно отключить. Но делать это необходимо каждый раз заново после выключения зажигания. Да и не все это делают.

С момента начала комплектации автомобилей такими системами управлять ими стало намного легче и безопаснее. Иные водители ни разу не отключали эти системы за все время пользования автомобилем. Ведь это так удобно! За время поездки не нужно переживать из-за того, что машину может унести с дороги, например, на льду после слишком резкого нажатия на педаль газа или тормоза.

А вот истинные ценители именно «чистого» автомобиля, не задушенного системами безопасности, отключают все электронные помощники, чтобы почувствовать душу и мощь автомобиля. Но таких совсем мало, даже можно сказать единицы.

Противобуксовочная система работает только в паре с антиблокировочной системой, но не наоборот. То есть антиблокировочная система может работать без антибукса, но антибукс без антиблокировочной системы работать не может.

Следует разделить три основных вида противобуксовочных систем. Они похожи, но используются на разных марках автомобилей.

Система Antriebsschlupfregelung (ASR)

ASR является самой распространенной противобуксовочной системой. Ее устанавливают такие флагманы немецкого и мирового рынка как Мерседес, Фольксваген и Ауди. Система, подстроенная под эти автомобили, оказывает огромную помощь новичкам, которые не могут уверенно вести себя на дороге. В список основных функций входит моментальная блокировка дифференциала, что дает возможность почувствовать «свободный» или «заваренный» дифференциал. Через блокировку дифференциала идет управление и корректировка крутящим моментом. Электронный мозг бортового компьютера обрабатывает информацию, поступающую от датчиков на ступицах. После мгновенного сравнения скорости и вращения ведущих и свободных колес система принимает решение притормозить, прибавить скорость и прекратить подачу топлива.

Эта система предполагает применение трех типов работы. Управление тормозной системой ведущих колес, управление тягой двигателя и комбинированный, когда применяется сразу два способа.

У системы ASR установлен порог влияния на тормозную систему. Обычно это 60 километров в час. Если превысить данный порог система во избежание опасных ситуаций влиять на тормозную систему не будет. На больших скоростях эта система оказывает влияние только на двигатель.

Система Traction control system (TCS)

Данная система вначале начала устанавливаться на автомобилях Хонда.

Система TCS (Traction control system) переводится с английского как система контроля тяги. Данная электрогидравлическая система нужна для того, чтобы в момент скольжения не случилось потери сцепления колесо-дорога. Работает данная система за счет датчиков, которые считывают скорость и частоту вращения (обороты в секунду) каждого колеса. Если система обнаруживает резкий скачок скорости (оборотов) одного из ведущих колес, то отключается тяга данного колеса. Система сама включит тягу на данное колесо после уравнивания скоростей. Дальнейший разброс количества оборотов на каждом колесе будет исправлен уже снижением тяги.

Такую систему использовали, как передовую, впервые на болидах Формулы-1 в 1990 году и запретили в 2008 году.

Система TRC (Traction Control)

Данная система безопасности применяется в основном на дорогих моделях автомобилей Хонда и Тойота.

Работа этой системы дополняет остальные тем, что не дает автомобилю уйти в занос. Принцип работы этой системы подразумевает снижение тяги и крутящего момента для предотвращения опасных ситуаций. Работа этой системы заметна при прохождении опасных поворотов со скользким покрытием. Автомобиль с ведущей передней осью даже при резком сбросе газа в повороте, благодаря этой системе, не сойдет с курса. Система TRC устанавливается даже на полноприводные автомобили, например, Toyota RAV 4.

Если данная система работает, то водитель не может повлиять на движение автомобиля нажатием на педаль газа, потому что система блокирует это действие.

Итак, современные автомобили напичканы разными электронными помощниками и это, конечно же, положительно влияет на дорожные ситуации, ведь благодаря таким системам становится меньше аварий из-за плохого сцепления с дорогой, а водители без опыта езды зимой не боятся ледяных дорог.

Видео

Смотрите, как работает TRC, на примере Toyota:

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-136785-1", renderTo: "yandex_rtb_R-A-136785-1", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Что собой представляет система трэкшн-контроль?

Трекшн-контроль - так называют антипробуксовочную систему современных автомобилей, которая является вторичной функцией электронной . Основное предназначение трекшн-контроля - обеспечение надежного сцепления колес с поверхностью дорожного покрытия.

Благодаря данной системе значительно упрощается процесс управления во время езды по влажному асфальту, гололеду, бездорожью, а также при совершении различных маневров: повороты, виражи, обгон, опережение, разворот.

Принцип работы

Принцип работы достаточно простой, однако реализовать его практически удалось только в начале 70-х годов. Впервые установили на автомобилях Buick еще в 1971 году, ее название звучало, как Max-Trac.

Избежать пробуксовки удалось следующим образом:

  • датчики постоянно анализировали угловую скорость колес;
  • информация поступала на электронный блок управления;
  • как только наблюдалось несовпадение между количеством подаваемой топливно-воздушной смеси? , скоростью самого транспортного средства и скоростью вращения одного из колес (попросту говоря, вы газуете, а машина не ускоряется из-за пробуксовки), активизировался трекшн-контроль путем уменьшения искрообразования в одном из цилиндров.

Позже система была коренным образом доработана и ее применили на Mercedes-Benz S-класса в 1987 году. Ее название по-немецки звучало, как Antriebsschlupfregelung, или ASR.

Компонентами трекшн-контроля являются:

  • сенсоры, установлены на каждом из колес и отслеживают их скорость вращения, а также резкие увеличения или уменьшения оборотов, вызванные пробуксовкой;
  • ECU (Electronic Control Unit или электронный блок управления) - обрабатывает поступающие данные от сенсоров и, в случае поступления сигналов о резком повышении количества оборотов, подает электрические импульсы на исполнительные устройства;
  • клапаны автоматического трекшн-контроля (ATC) - блокируют колеса, которые пробуксовывают.

Электрические клапаны врезаны в магистральные трубки, по которым циркулирует тормозная жидкость. Как только поступает импульс с электронного блока управления, клапан открывается, пропуская необходимый объем жидкости, а потом резко закрывается, чтобы сохранилось высокое давление, нужное для приведения в действие штока рабочего цилиндра и прижимания фрикционных колодок к тормозному диску автомобиля. Также трекшн-контроль связан с насосом обратной подачи тормозной жидкости и системой зажигания автомобиля.

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-136785-3", renderTo: "yandex_rtb_R-A-136785-3", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Как видим, идея простая, правда для ее реализации необходимо наличие быстро работающих процессоров, способных обрабатывать большие объемы информации в течение коротких промежутков времени.

Применение системы трекшн-контроля на практике

Достаточно зайти на официальный сайт любого производителя автомобилей, чтобы убедиться, что подобные вспомогательные системы сегодня широко применяются - в описании комплектации можно увидеть такое количество сокращений (TCS, BAS, ESC, EBD, ETC, VVT, A-TRC, Hill-Start, Down-Start и так далее), что нужно брать английский словарь или долго искать в интернете определения тех или иных функций.

Тем не менее, благодаря всем им вождение становится все более простым и увлекательным занятием.

Трекшн-контроль нашел широкое применение:

  • легковые и грузовые моторизованные транспортные средства;
  • гоночные болиды Формула-1 - они меньше буксуют на крутых поворотах, соответственно повышается скорость, уменьшается количество аварий, ну и появляются новые рекорды;
  • мотоциклы - впервые установлен на BMW K-1, потом применялся на Ducati и Kawasaki Concours-14;
  • внедорожники - трекшн-контроль зачастую устанавливают вместе с блокировкой дифференциала, (есть и такие модели, где TCS применяется самостоятельно без блокировки), впервые такое решение было реализовано в 1993 на RangeRover - ABS вместе с TCS, по свидетельству инженеров, значительно повысили управляемость на сложных маршрутах, причем без блокировки дифференциала.

К сожалению, на автомобилях отечественного производства подобных новшеств пока нет. Например на люксовой комплектации универсала LADA Largus имеется только ABS. А зато на Granta Lux есть ABS, Brake-Assist и EBD. Надеемся на новых ЛАДА Веста комплектация будет более приближенной к современным требованиям.

(function(w, d, n, s, t) { w[n] = w[n] || ; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: "R-A-136785-2", renderTo: "yandex_rtb_R-A-136785-2", async: true }); }); t = d.getElementsByTagName("script"); s = d.createElement("script"); s.type = "text/javascript"; s.src = "//an.yandex.ru/system/context.js"; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, "yandexContextAsyncCallbacks");

Забыл написать, Куга-2, Titanium, 150л.с., АКПП.

Касательно заноса.
Наши мысли были таковы, чтобы сработала ESP машину нужно пустить в занос. Для этого мы пытались сделать так:
1) перед поворотом резкий тормоз в пол не отпуская сознательно тормоз выворачиваешь руль, как только зад машины пошел в занос отпускаешь тормоз (во время заноса должен замигать ESP) и давишь в пол на газ, при всех этих действиях движок должен быть "придушен" электроникой автоматически. Именно это мы провоцировали и ожидали увидеть, но на самом деле было так :

В тот момент как авто почти стало разворачивать на 90 градусов и резком давлении педали газа в пол + работа рулем, я видел что передние колеса в бок выбрасывали струи снега и льда, и никакого "придушения" в двигателе не было . Если газом хоть чуток перестараться авто можно на 180 градусов крутануть. Именно мы и не поняли в чем прикол хваленной электроники на К2. На К-1 водитель сказал ESP в этих ситуациях мигает а здесь почему-то нет.
Хочу отметить, что водитель опытный кроссоверовод и Кугу-1 очень хорошо знает так как он владелец этой модели. Так что про AWD или ESP на К2 я ничего не понял, может он работает на асфальте или бездорожье?

Из моего опыта по Grand Vitara

1. ESP не вырубишь и более 40 км.ч. автоматом электроника ее всегда включит.
2. Без ESP можно только на пониженной.
3. ESP блокирует заносы и душит двигатель, это легко проверить если вынуть предохранитель 40А ABS (ESP) для сравнения в
поведении авто.
Сначала кажется что машина стала резвее, с места трогается с пробуксовкой колес, но на дороге точно хуже держит направление.
При интенсивном разгоне в пол, как на переднеприводной машине надо рулем и газом выдерживать курс.
Вообще с всеми электронными помощниками на снегу особо не позажигаешь, на месте не покрутишься, в управляемом заносе боком не проедешься. И как бы электроника не помогала полноприводной машине меня спасала только своя голова.

4. ESP может работать как имитация осевых блокировок в некоторых ситуациях. С другой стороны, ESP при пробуксовке душит двигатель, что может посадить машину в грязи или снегу но в гололед на шипах автомобиль едет предсказуемо и уверенно . ESP на Витаре вмешивается в управление адекватно, т.е. придушивает двигатель или не душит его ВООБЩЕ , такие ситуации были у меня и тормозить было архиопасно - одна сторона колес на асфальте, одна на снегу, скорость 70-80км, помогает только сильное удержание руля, благо он с обратной связью дружит послушно.

EBD - распределение тормозных усилий, система следит за тем, чтобы колеса тормозили равномерно. ABS не допускает блокировки колес при торможении, а следовательно, потери управляемости при торможении. К тормозам пришлось привыкать,сзади тормоза тоже дисковые, потому тормоза очень хваткие, при этом торможение происходит равномерно, автомобиль носом не клюет - чувствуется работа EBD.

ESP - вообще очень обобщенное название, это не одна система, а целый комплекс систем, механических и электронных, общая цель которых - контролировать стабильность движения автомобиля, предотвращать занос, и т.п. TCS/TRS - система контроля тяги, часто входит в состав ESP, не допускает пробуксовки колес, особенно при старте, плавно передавая крутящий момент. ESP. это очень важная вещь во первых для безопасности- система курсовой устойчивости помогает стабилизировать машину в заносе, во вторых в ESP зашита функция "антибукс" или TRC. Как только давишь педаль в пол, тяга не набирается, колёса начинают оттормаживаться в нужных местах, машину не уводит.

Когда был задор и большой интерес ко всему этому лично проверял имитацию блокировки дифференциалов, причем на Витаре блокировка продуманно работает, автомобиль не боится даже сильных диагональных вывешиваний, выезжает буквально на 2х колесах, когда 2 других полностью в воздухе, нужно следить за газом, чтобы торм. колодки поджимали и крутящий момент переходил на загруженные колеса!

Сцепление шин с дорожным покрытием – в обиходе «держак» – ценится на вес золота. Надо ли говорить, что производители техники из кожи вон лезут, придумывая все новые «мульки», чтобы использовать его наиболее эффективно. И если «первой ласточкой» стала ABS, то современный тренд - трэкшн-контроль, по сути ABS наоборот.

«Держак» не бесконечен

Прежде чем лезть в электронные дебри современных мотоциклов, вспомним, за что воюем. «Держак» - это максимальная сила, приложенная к колесу, при которой оно еще держится за асфальт, не соскальзывает. Причем важно понимать, что, грубо говоря, шине все равно, с какой стороны приложена сила, главное – ее максимальная величина. В реальности же на шину действуют разные по природе силы. Сдвинуть ее с траектории пытаются как продольные воздействия (при разгоне или торможении), так и поперечные (в повороте). При этом главным все равно остается векторная сумма сил (или суперпозиция). Если, например, мы хотим максимально использовать сцепление шин с асфальтом для противодействия центробежной силе, придется отказаться от торможения или разгона на дуге. Или наоборот, максимально эффективно оттормозиться можно только на прямой, любой поворот потребует своей доли сцепления в пятне контакта. Но уже давно испытания показали, что максимальный «держак» на сухом асфальте достигается при небольшой пробуксовке, практически на грани перехода от трения качения к трению скольжения. Именно этот момент создатели антиблокировочных систем и пытаются использовать во благо пилота, одновременно уберегая от юза, то есть трения скольжения. При торможении системы ABS позволяют колесу срываться в юз на какие-то мгновения и тут же – электроника отслеживает остановку колес очень быстро – вновь дают резине восстановить сцепление с асфальтом. А почему бы не заставить эффект работать во благо разгона? Именно так рассуждал инженер из компании Honda, разработавший систему ABS+TCS для вышедшей в 1992 году модели ST1100 Pan European. Как только разница угловых скоростей вращения колес (а измерялась она те два десятка лет назад через датчики ABS) превышала определенную величину, «мозг» управления мотором уводил зажигание в «поздноту» (мотик был карбюраторный, и воздействовать на состав смеси не было возможности), и тяга мотора резко падала.

Несложно предположить, что при этом разница угловых скоростей вращения колес уменьшалась, и как только она доходила до разумного – по мнению «мозгов» – предела, мотор возвращался в штатный режим. Но та система уберегала мотоцикл от активной пробуксовки при разгоне по прямой, не спасая от лоусайдов при неаккуратном обращении с ручкой газа в поворотах. Ведь в наклоне сорвать колесо в пробуксовку намного легче из-за того, что часть «держака», как мы помним, расходуется на противодействие центробежной силе. Если же сумма сил, приходящихся на пятно контакта покрышки с дорогой, превысит силу трения, колесо сорвется в юз, а корма мотоцикла вильнет наружу поворота, ставя байк боком к траектории поворота. Дальше возможны три варианта развития ситуации. Первый, наилучший: пилот не испугался и не закрыл панически дроссель, а сбросил газ быстро, но плавно – и мотоцикл стабилизировался. Второй, «продолженный»: пилот продолжил открывать газ, и через миг мотоцикл «лег» (лоусайд). Третий, «брутальный»: если пилот закрыл газ поздно или слишком резко, резина моментально вновь обретает надежное сцепление с асфальтом, но кинетическая энергия «вилятельного» движения заставляет мотоцикл подпрыгнуть, перевернуться и вышвырнуть пилота из седла (хайсайд). Так вот, современные системы трэкшн-контроля как раз и борются за удержание заднего колеса на грани сцепления резины с дорожным покрытием и вступают в работу главным образом как раз в поворотах, когда риск пустить заднее колесо в занос намного выше среднего.

Как они делают это?

Заметим сразу: никакого сходства у мотоциклетных и автомобильных противобуксовочных систем нет. В мире четырех колес системы трэкшн-контроля не только играют с тягой двигателя, но и подтормаживают отдельные колеса. У нас же – только одно ведущее колесо и коррекция тяги двигателя исключительно в меньшую сторону. Мотоциклетный антибукс сейчас стал настолько модным трендом, что практически все мотопроизводители занимаются активным внедрением подобных устройств, однако мы перечислим наиболее ярких представителей этой новой породы электронных «мулек». Первые системы нынешнего века, призванные сделать реакцию на газ более плавной и тем самым бороться со сносом заднего колеса на «гражданских» аппаратах, стали применять на литровом «гисере» 2007 года. Там не было ни датчиков скоростей вращения колес (спидометр не в счет), ни гироскопов, но зато там был второй ряд дроссельных заслонок с приводом от шагового электромотора, управляемый «мозгами». По косвенным параметрам (скорость мотоцикла, выбранная передача, положение ручки газа) оценивалась нагрузка на мотор, и на основании этих параметров контроллер систем зажигания и впрыска в зависимости от выбранной программы управления (а всего их там было три) ограничивал тягу, а точнее, скорость набора двигателем оборотов под той или иной нагрузкой.

За литром последовали и «младшие братья» – обзавелись многорежимными «мозгами», которые есть даже на нынешней «шестисотке». По этому же принципу работает и «стабилизатор» на MV Agusta F4. Да, работает, но уж больно неточно. Не имея возможности отследить дорожную обстановку по прямым параметрам (угол наклона мотоцикла, скорости вращения обоих колес), такой способ уберечь заднее колесо от сноса можно назвать лишь условным.Следующим стал концерн BMW в 2006 году с вполне себе «гражданским» R1200R. Тут и скорости вращения колес отслеживались через датчики системы ABS, и, как и на древней «Пан-Европе», при пробуксовке зажигание становилось позже, а смесь – беднее, да и работает система BMW ASC (Automatic Stability Control) намного плавнее и расторопнее. Чуть позже борцом за справедливость стала Ducati, в 2008 году представив на модели 1098R систему DTC (Ducati Traction Control). Конечно, она имела мало общего с аналогичной «приблудой», применяемой в WSBK, но тем не менее тут уже были датчики скорости на обоих колесах (сигнал давали болты крепления тормозных дисков), и коррекция тяги (через изменение угла опережения зажигания и количества подаваемого топлива) производилась на основании «живых» показателей, получаемых в режиме реального времени, хотя тоже по прописанному в памяти системы управления шаблону (как у Suzuki и MV Agusta). Принципиальное отличие в том, что тут пробуксовка отслеживалась не только через внезапный рост частоты вращения коленвала, но и через скорости вращения обоих колес. Отличало «гражданский» трэкшн от гоночного то, что на серийных спортбайках, в отличие от гоночных, нет датчиков положения подвесок, да и в гонках мало кого интересует экономия бензина, и при пробуксовке на гоночных Ducati «рубилось» зажигание. Однако если такой способ применить на серийной машине со штатным выхлопом, то через пару таких срабатываний антибукса, катализатор повесится на проводе от лямбда-зонда, поэтому «рубят» еще и топливо, жертвуя небольшой потерей тяги, обусловленной «высушиванием» впускных каналов. Степень «вмешательства» электроники в характер мотора делится на восемь ступеней, плюс систему можно отключить вовсе. Однако на новой Multistrada скорость вращения колес считывается уже не по болтам, а с датчиков ABS – так намного точнее, ведь если считывать скорость по болтам, то получается 6–8 импульсов за оборот колеса (то есть 60 и 45 градусов между импульсами), а если через «гребенку» индукционного датчика ABS, то можно получить до сорока импульсов за один оборот. Но возвращаясь к хронологии событий, скажем честно, система BMW ASC дальше оппозитного нейкеда R1200R не ушла, ведь в 2009 году появилась DTC (Dynamic Traction Control) на нашумевшем спортбайке S1000RR – кошмаре для японских производителей. Она по праву может нести звание шедевра инженерной мысли, ибо содержит не только эти самые датчики ABS, но и гироскоп, который отслеживает крены и дифферент машины. Именно благодаря гироскопу на S1000RR невозможно «перекозлить» (конечно, если система DTC вовсе не отключена), а также максимально точно отследить ситуацию в повороте (ведь если антибукс перестрахуется и заработает раньше времени, то меньше тяги удастся реализовать, что приведет к ненужной потере скорости).

Например, в режиме Slick тяга двигателя режется электронными дросселями и форсунками, стоит образоваться сносу кормы, но только при кренах мотоцикла более 23 градусов, что подразумевает адекватно аккуратное обращение с газом. Но еще на журналистском тесте в Портимао многие заметили, что при выходе из скоростного правого поворота с подъемом на финишную прямую мотоцикл уверенно задирал переднее колесо в воздух, несмотря на программу «антивили». BMW-шные инженеры-электронщики ограничились туманными объяснениями насчет сочетания факторов (наклон-подъем-разгон), которое запутывало электронный «мозг». Кроме того, из опыта эксплуатации редакционного спортивного BMW можно сказать, что баварский вариант «антибукса» работает все-таки грубо, приводя к задирам на резине после нескольких трек-сессий.Так же поступили и инженеры Kawasaki на ZX-10R Ninja, дебютировавшем этой зимой («Мото» № 02–2011) – там трэкшн-контроль несет в себе как прелести BMW-шной DTC, так и некие шаблоны, аналогичные тем, что применялись на прежних «нинзях» (фактически, как у Suzuki), что позволяет ему работать не только в «боевом», но и в превентивном режиме, пресекая попытки срыва колеса в юз на корню. А вот Yamaha решила, что на большом турэндуро Super Tén?r? не нужен гироскоп, и ограничилась обычным (по нынешним меркам) антибуксом, использующим лишь показания датчиков ABS. Результат – нареканий столько же, сколько и восторгов.

Взгляд в завтра.

Ввиду все большей «электронизации» современных мотоциклов, переходящих на электронное управление дросселями, а также с развитием систем ABS, думаю, что уже через десяток лет трэкшн-контроль появится даже на скутерах. И возможно, уже не с индукционными датчиками, которые, как известно, начинают работать только при достижении определенной скорости (обычно 15–20 км/ч), а с датчиками Холла, которым плевать на скорость (сейчас уже на большинстве автомобилей датчики скоростей вращения колес – «холлы»).

Оставить комментарий

Для добавления комментария требуется зарегистрироваться или авторизоваться на сайте.