Новая разработка ОАО «Aвиадвигатель» для электроэнергетики. Система охлаждения последней ступени осевой турбины низкого давления турбореактивного двухконтурного двигателя Действительная скорость газа на выходе из СА

Турбина

Турбина предназначена для привода компрессора и вспомогательных агрегатов двигателя. Турбина двигателя - осевая, реактивная, двухступенчатая, охлаждаемая, двухроторная.

Узел турбины включает последовательно расположенные одноступенчатые осевые турбины высокого и низкого давления, а также опору турбины. Опора - элемент силовой схемы двигателя.

Турбина высокого давления

СА ТВД состоит из наружного кольца, внутреннего кольца, крышки, аппарата закрутки, блоков сопловых лопаток, лабиринтных уплотнений, уплотнений стыков сопловых лопаток, проставок с сотовыми вставками и крепёжных деталей.

Наружное кольцо имеет фланец для соединений с фланцем обода соплового аппарата ТНД и корпуса ВВТ. Кольцо телескопически соединено с корпусом ВВТ и имеет полость для подвода вторичного воздуха из ОКС на охлаждение наружных полок сопловых лопаток.

Внутреннее кольцо имеет фланец для соединения с крышкой и внутренним корпусом ОКС.

СА ТВД имеет сорок пять лопаток, объединенные в пятнадцать литых трёхлопаточных блоков. Блочная конструкция лопаток СА позволяет уменьшить число стыков и перетекания газа.

Сопловая лопатка - пустотелая, охлаждаемая двуполостная. Каждая лопатка имеет перо, наружную и внутреннюю полки, образующие с пером и полками соседних лопаток проточную часть СА ТВД.

Ротор ТВД предназначен для преобразования энергии газового потока в механическую работу на валу ротора. Ротор состоит из диска, цапфы с лабиринтными и маслоуплотнительными кольцами. Диск имеет девяносто три паза для крепления рабочих лопаток ТВД в “ёлочных” замках, отверстия для призонных болтов стягивающих диск, цапфу и вал ТВД, а также наклонные отверстия для подвода охлаждающего воздуха к рабочим лопаткам.

Рабочая лопатка ТВД - литая, полая, охлаждаемая. Во внутренней полости лопатки для организации процесса охлаждения имеются продольная перегородка, турбулизирующие штырьки и рёбра. Хвостовик лопатки имеет удлинённую ножку и замок “ёлочного” типа. В хвостовике имеются каналы для подвода охлаждающего воздуха к перу лопатки, а в выходной кромке - щель для выхода воздуха.

В хвостовике цапфы размещены масляное уплотнение и обойма радиального роликового подшипника задней опоры ротора высокого давления.

Турбина низкого давления

СА ТНД состоит из обода, блоков сопловых лопаток, внутреннего кольца, диафрагмы, сотовых вставок.

Обод имеет фланец для соединения с корпусом ВВТ и наружным кольцом ТВД, а также фланец для соединения с корпусом опоры турбины.

СА ТНД имеет пятьдесят одну лопатку спаянные в двенадцать четырёхлопаточные блоки и один трёхлопаточный блок. Сопловая лопатка - литая, полая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседних лопаток проточную часть СА.

Во внутренней части полости пера лопатки размещён перфорированный дефлектор. На внутренней поверхности пера имеется поперечные рёбра и турбулизирующие штырьки.

Диафрагма предназначена для разделения полостей между рабочими колёсами ТВД и ТНД.

Ротор ТНД состоит из диска с рабочими лопатками, цапфы, вала и напорного диска.

Диск ТНД имеет пятьдесят девять паза для крепления рабочих лопаток и наклонные отверстия для подвода охлаждающего воздуха к ним.

Рабочая лопатка ТНД - литая, полая, охлаждаемая. На периферийной части лопатка имеет бандажную полку с гребешком лабиринтного уплотнения, обеспечивающим уплотнение радиального зазора между статором и ротором.

От осевых перемещений в диске лопатки зафиксированы разрезным кольцом со вставкой, которая, в свою очередь, зафиксирована штифтом на ободе диска.

Цапфа имеет в передней части внутренние шлицы, для передачи крутящего момента на вал ТНД. На наружной поверхности передней части цапфы установлена внутренняя обойма роликового подшипника задней опоры ТВД, лабиринт и набор уплотнительных колец, образующей вместе с крышкой, установленной в цапфе, переднее уплотнение масляной полости опоры ТВД.

На цилиндрическом поясе в задней части установлен набор уплотнительных колец, образующих вместе с крышкой уплотнение масляной полости опоры ТНД.

Вал ТНД состоит из трёх частей. Соединение частей вала между собой - вильчатое. Крутящий момент в местах соединения передаётся радиальными штифтами. В задней части вала имеется откачивающий маслонасос опоры турбины.

В передней части ТНД имеются шлицы, передающие крутящий момент на ротор компрессора низкого давления через рессору.

Напорный диск предназначен для создания дополнительного подпора и обеспечивает увеличение давление охлаждающего воздуха на входе в рабочие лопатки ТНД.

Опора турбины включает в себя корпус опоры и корпус подшипника. Корпус опоры состоит из наружного корпуса и внутреннего кольца, соединённых силовыми стойками и образующие силовую схему опоры турбины. В состав опоры входят также экран с обтекателями, пеногасящая сетка и крепёжные детали. Внутри стоек размещены трубопроводы подвода и откачки масла, суфлирования масляных полостей и слива масла. Через полости стоек подводится воздух на охлаждение ТНД и отводится воздух из предмасляной полости опоры. Стойки закрыты обтекателями. На корпусе подшипника установленымаслооткачивающий насос и масляный коллектор. Между наружной обоймой роликоподшипника ротора ТНД и корпусом подшипника размещён упруго-масляный демпфер.

На опоре турбины закреплён конус-обтекатель, профиль которого обеспечивает вход газа в форсажную камеру сгорания с минимальными потерями.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным . Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя - одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Полезные статьи по теме.

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов "В-В", "В-3", "3-В", "3-3", авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей - от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД );
  • воздушно-реактивные (ВРД включая ГТД );
  • ракетные (РД или РкД ).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД .

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные , т. е. включающие компрессор для механического сжатия воздуха;
  • бескомпрессорные :
    • прямоточные ВРД (СПВРД ) со сжатием воздуха только от скоростного напора;
    • пульсирующие ВРД (ПуВРД ) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД , ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции ;
  • двигатели непрямой реакции .

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно - это все ракетные двигатели (РкД ), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ ), турбореактивные двухконтурные (ТРДД и ТРДДФ ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД ), пульсирующие (ПуВРД ) и многочисленные комбинированные двигатели .

Газотурбинные двигатели непрямой реакции (ГТД ) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые , турбовинтовентиляторные , турбовальные двигатели - ТВД , ТВВД , ТВГТД ). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей , соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателей - ТРДП (ТРД или ТРДД + СПВРД );
  • ракетно-прямоточных - РПД (ЖРД или РДТТ + СПВРД или ГПВРД );
  • ракетно-турбинных - РТД (ТРД + ЖРД );

и многие другие комбинации двигателей более сложных схем.

Поршневые двигатели (ПД)

Двухрядный звездообразный 14-ти цилиндровый поршневой двигатель с воздушным охлаждением. Общий вид.

Поршневой двигатель (англ. Piston engine ) -

Классификация поршневых двигателей. Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

  • В зависимости от рода применяемого топлива - на двигатели легкого или тяжелого топлива.
  • По способу смесеобразования - на двигатели с внешним смесеобразованием (карбюраторные) и двигатели с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).
  • В зависимости от способа воспламенения смеси - на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.
  • В зависимости от числа тактов - на двигатели двухтактные и четырехтактные.
  • В зависимости от способа охлаждения - на двигатели жидкостного и воздушного охлаждения.
  • По числу цилиндров - на двигатели четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т.д.
  • В зависимости от расположения цилиндров - на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

  • По характеру изменения мощности в зависимости от изменения высоты - на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета.
  • По способу привода воздушного винта - на двигатели с прямой передачей на винт и редукторные двигатели.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Газотурбинные двигатели (ГТД)

Газотурбинный двигатель - тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина.

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (англ. Turbojet engine ) - тепловой двигатель, в котором используется газовая турбина, а реактивная тяга образуется при истечении продуктов сгорания из реактивного сопла. Часть работы турбины расходуется на сжатие и нагревание воздуха (в компрессоре).

Схема турбореактивного двигателя:
1. входное устройство;
2. осевой компрессор;
3. камера сгорания;
4. рабочие лопатки турбины;
5. сопло.

В турбореактивном двигателе сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы.

Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД этот показатель составлял 3, то у современных он достигает 40. Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя так же именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока:

  • Первичный воздух - поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической .
  • Вторичный воздух - поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.
  • Третичный воздух - поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле, который истекает из него, создавая реактивную тягу.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащенные системами охлаждения, и термобарьерные покрытия.

Турбореактивный двигатель с форсажной камерой (ТРДФ)

Турбореактивный двигатель с форсажной камерой - модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Отличается от ТРД наличием форсажной камеры между турбиной и реактивным соплом. В эту камеру подается дополнительное количество топлива через специальные форсунки, которое сжигается. Процесс горения организуется и стабилизируется с помощью фронтового устройства, обеспечивающего перемешивание испаренного топлива и основного потока. Повышение температуры, связанное с подводом тепла в форсажной камере, увеличивает располагаемую энергию продуктов сгорания и, следовательно, скорость истечения из реактивного сопла. Соответственно, возрастает и реактивная тяга (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Двухконтурный турбореактивный двигатель (ТРДД)

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М. (На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя. Авторское свидетельство вручили 22 апреля 1941 года.)

Можно сказать, что с 1960-х и по сей день, в самолетном авиадвигателестроении - эра ТРДД. ТРДД различных типов являются наиболее распространенным классом ВРД, используемых на самолетах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью двухконтурности, до гигантских коммерческих и военно-транспортных самолетов с ТРДД с высокой степенью двухконтурности.

Схема турбореактивного двухконтурного двигателя:
1. компрессор низкого давления;
2. внутренний контур;
3. выходной поток внутреннего контура;
4. выходной поток внешнего контура.

В основу двухконтурных турбореактивных двигателей положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности (m), то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур. (m = G 2 / G 1 , где G 1 и G 2 расход воздуха через внутренний и внешний контуры соответственно.)

При степени двухконтурности меньше 4 (m<4) потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 - потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

В ТРДД заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности - тем большего диаметра будет двигатель при прочих равных условиях.

Все ТРДД можно разбить на 2 группы:

  • со смешением потоков за турбиной;
  • без смешения.

В ТРДД со смешением потоков (ТРДДсм ) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.

Военный ТРДДФ EJ200 (m=0,4)

Двухконтурный турбореактивный двигатель с форсажной камерой (ТРДДФ)

Двухконтурный турбореактивный двигатель с форсажной камерой - модификация ТРДД. Отличается наличием форсажной камеры. Нашел широкое применение.

Продукты сгорания, выходящие из турбины, смешиваются с воздухом, поступающим из внешнего контура, а затем к общему потоку подводится тепло в форсажной камере, работающей по такому же принципу, как и в ТРДФ . Продукты сгорания в этом двигателе истекают из одного общего реактивного сопла. Такой двигатель называется двухконтурным двигателем с общей форсажной камерой .

ТРДДФ с отклоняемым вектором тяги (ОВТ).

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Специальные поворотные сопла, на некоторох ТРДД(Ф), позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолетом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолета при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Схема турбовентиляторного двигателя:
1. вентилятор;
2. защитный обтекатель;
3. турбокомпрессор;
4. выходной поток внутреннего контура;
5. выходной поток внешнего контура.

Турбовентиляторный двигатель (англ. Turbofan engine ) - это ТРДД с высокой степенью двухконтурности (m>2). Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевое направление). Соответственно, большинство ТРДД с высокой степенью двухконтурности - без смешения потоков .

Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.

Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.

По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока - сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.

ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.

Достоинства и недостатки .

Главным достоинством таких двигателей является их высокая экономичность.

Недостатки - большие масса и габариты. Особенно - большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.

Область применения таких двигателей - дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.


Турбовинтовентиляторный двигатель (ТВВД)

Турбовинтовентиляторный двигатель (англ. Turbopropfan engine ) -

0

Воздушно-реактивные двигатели по способу предварительного сжатия воздуха перед поступлением в камеру сгорания разделяются на компрессорные и бескомпрессорные. В бескомпрессорных воздушно-реактивных двигателях используется скоростной напор воздушного потока. В компрессорных двигателях воздух сжимается компрессором. Компрессорным воздушно-реактивным двигателем является турбореактивный двигатель (ТРД). В группу, получившую название смешанных или комбинированных двигателей, входят турбовинтовые двигатели (ТВД) и двухконтурные турбореактивные двигатели (ДТРД). Однако конструкция и принцип работы этих двигателей во многом схожи с турбореактивными двигателями. Часто все типы указанных двигателей объединяют под общим названием газотурбинных двигателей (ГТД). В качестве топлива в газотурбинных двигателях используется керосин.

Турбореактивные двигатели

Конструктивные схемы. Турбореактивный двигатель (рис. 100) состоит из входного устройства, компрессора, камеры сгорания, газовой турбины и выходного устройства.

Входное устройство предназначено для подвода воздуха к компрессору двигателя. В зависимости от расположения двигателя на самолете оно может входить в конструкцию самолета или в конструкцию двигателя. Входное устройство способствует повышению давления воздуха перед компрессором.

Дальнейшее повышение давления воздуха происходит в компрессоре. В турбореактивных двигателях применяются компрессоры центробежные (рис. 101) и осевые (см. рис. 100).

В осевом компрессоре при вращении ротора рабочие лопатки, воздействуя на воздух, закручивают его и заставляют двигаться вдоль оси в сторону выхода из компрессора.

В центробежном компрессоре при вращении рабочего колеса воздух увлекается лопатками и под действием центробежных сил движется к периферии. Наиболее широкое применение в современной авиации нашли двигатели с осевым компрессором.





Осевой компрессор включает в себя ротор (вращающаяся часть) и статор (неподвижная часть), к которому крепится входное устройство. Иногда во входных устройствах устанавливаются защитные сетки, предотвращающие попадание в компрессор посторонних предметов, которые могут привести к повреждению лопаток.

Ротор компрессора состоит из нескольких рядов профилированных рабочих лопаток, расположенных по окружности и последовательно чередующихся вдоль оси вращения. Роторы подразделяют на барабанные (рис. 102, а), дисковые (рис. 102, б) и барабаннодисковые (рис. 102, в).

Статор компрессора состоит из кольцевого набора профилированных лопаток, закрепленных в корпусе. Ряд неподвижных лопаток, называемых спрямляющим аппаратом, в совокупности с рядом рабочих лопаток называется ступенью компрессора.

В современных авиационных турбореактивных двигателях применяются многоступенчатые компрессоры, увеличивающие эффективность процесса сжатия воздуха. Ступени компрессора согласуются между собой таким образом, чтобы воздух на выходе из одной ступени плавно обтекал лопатки следующей ступени.

Нужное направление воздуха в следующую ступень обеспечивает спрямляющий аппарат. Для этой же цели служит и направляющий аппарат, устанавливаемый перед компрессором. В некоторых конструкциях двигателей направляющий аппарат может отсутствовать.

Одним из основных элементов турбореактивного двигателя является камера сгорания, расположенная за компрессором. В конструктивном отношении камеры сгорания выполняются трубчатыми (рис. 103), кольцевыми (рис. 104), трубчато-кольцевыми (рис. 105).




Трубчатая (индивидуальная) камера сгорания состоит из жаровой трубы и наружного кожуха, соединенных между собой стаканами подвески. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, служащий для стабилизации пламени. На жаровой трубе имеются отверстия для подвода воздуха, предотвращающего перегрев жаровой трубы. Поджигание топливо-воздушной смеси в жаровых трубах осуществляется специальными запальными устройствами, устанавливаемыми на отдельных камерах. Между собой жаровые трубы соединяются патрубками, которые обеспечивают поджигание смеси во всех камерах.



Кольцевая камера сгорания выполняется в форме кольцевой полости, образованной наружным и внутренним кожухами камеры. В передней части кольцевого канала устанавливается кольцевая жаровая труба, а в носовой части жаровой трубы - завихрители и форсунки.

Трубчато-кольцевая камера сгорания состоит из наружного и внутреннего кожухов, образующих кольцевое пространство, внутри которого размещаются индивидуальные жаровые трубы.

Для привода компрессора ТРД служит газовая турбина. В современных двигателях газовые турбины выполняются осевыми. Газовые турбины могут быть одноступенчатыми и многоступенчатыми (до шести ступеней). К основным узлам турбины относятся сопловые (направляющие) аппараты и рабочие колеса, состоящие из дисков и расположенных на их ободах рабочих лопаток. Рабочие колеса крепятся к валу турбины и образуют вместе с ним ротор (рис. 106). Сопловые аппараты располагаются перед рабочими лопатками каждого диска. Совокупность неподвижного соплового аппарата и диска с рабочими лопатками называется ступенью турбины. Рабочие лопатки крепятся к диску турбины при помощи елочного замка (рис. 107).

Выпускное устройство (рис. 108) состоит из выпускной трубы, внутреннего конуса, стойки и реактивного сопла. В некоторых случаях из условий компоновки двигателя на самолете между выпускной трубой и реактивным соплом устанавливается удлинительная труба. Реактивные сопла могут быть с регулируемым и нерегулируемым выходным сечением.

Принцип работы. В отличие от поршневого двигателя рабочий процесс в газотурбинных двигателях не разделен на отдельные такты, а протекает непрерывно.

Принцип работы турбореактивного двигателя заключается в следующем. В полете воздушный поток, набегающий на двигатель, проходит через входное устройство в компрессор. Во входном устройстве происходит предварительное сжатие воздуха и частичное преобразование кинетической энергии движущегося воздушного потока в потенциальную энергию давления. Более значительному сжатию воздух подвергается в компрессоре. В турбореактивных двигателях с осевым компрессором при быстром вращении ротора лопатки компрессора, подобно лопастям вентилятора, прогоняют воздух в сторону камеры сгорания. В установленных за рабочими колесами каждой ступени компрессора спрямляющих аппаратах вследствие диффузорной формы межлопаточных каналов происходит преобразование приобретенной в колесе кинетической энергии потока в потенциальную энергию давления.

В двигателях с центробежным компрессором сжатие воздуха происходит за счет воздействия центробежной силы. Воздух, входя в компрессор, подхватывается лопатками быстро вращающейся крыльчатки и под действием центробежной силы отбрасывается от центра к окружности колеса компрессора. Чем быстрее вращается крыльчатка, тем большее давление создается компрессором.

Благодаря компрессору ТРД могут создавать тягу при работе на месте. Эффективность процесса сжатия воздуха в компрессоре


характеризуется величиной степени повышения давления π к, которая представляет собой отношение давления воздуха на выходе из компрессора р 2 к давлению атмосферного воздуха р H


Воздух, сжатый во входном устройстве и компрессоре, далее поступает в камеру сгорания, разделяясь на два потока. Одна часть воздуха (первичный воздух), составляющая 25-35% от общего расхода воздуха, направляется непосредственно в жаровую трубу, где происходит основной процесс сгорания. Другая часть воздуха (вторичный воздух) обтекает наружные полости камеры сгорания, охлаждая последнюю, и на выходе из камеры смешивается с продуктами сгорания, уменьшая температуру газовоздушного потока до величины, определяемой жаропрочностью лопаток турбины. Незначительная часть вторичного воздуха через боковые отверстия жаровой трубы проникает в зону горения.

Таким образом, в камере сгорания происходит образование топливо-воздушной смеси путем распыливания топлива через форсунки и смешения его с первичным воздухом, горение смеси и смешение продуктов сгорания со вторичным воздухом. При запуске двигателя зажигание смеси осуществляется специальным запальным устройством, а при дальнейшей работе двигателя топливо-воздушная смесь поджигается уже имеющимся факелом пламени.

Образовавшийся в камере сгорания газовый поток, обладающий высокой температурой и давлением, устремляется на турбину через суживающийся сопловой аппарат. В каналах соплового аппарата скорость газа резко возрастает до 450-500 м/сек и происходит частичное преобразование тепловой (потенциальной) энергии в кинетическую. Газы из соплового аппарата попадают на лопатки турбины, где кинетическая энергия газа преобразуется в механическую работу вращения турбины. Лопатки турбины, вращаясь вместе с дисками, вращают вал двигателя и тем самым обеспечивается работа компрессора.

В рабочих лопатках турбины может происходить либо только процесс преобразования кинетической энергии газа в механическую работу вращения турбины, либо еще и дальнейшее расширение газа с увеличением его скорости. В первом случае газовая турбина называется активной, во втором - реактивной. Во втором случае лопатки турбины, помимо активного воздействия набегающей газовой струи, испытывают и реактивное воздействие за счет ускорения газового потока.

Окончательное расширение газа происходит в выходном устройстве двигателя (реактивном сопле). Здесь давление газового потока уменьшается, а скорость возрастает до 550-650 м/сек (в земных условиях).

Таким образом, потенциальная энергия продуктов сгорания в двигателе преобразуется в кинетическую энергию в процессе расширения (в турбине и выходном сопле). Часть кинетической энергии при этом идет на вращение турбины, которая в свою очередь вращает компрессор, другая часть - на ускорение газового потока (на создание реактивной тяги).

Турбовинтовые двигатели

Устройство и принцип действия. Для современных самолетов,

обладающих большой грузоподъемностью я дальностью полета, нужны двигатели, которые могли бы развить необходимые тяги при минимальном удельном весе. Этим требованиям удовлетворяют турбореактивные двигатели. Однако они неэкономичны по сравнению с винтомоторными установками на небольших скоростях полета. В связи с этим некоторые типы самолетов, предназначенные для полетов с относительно невысокими скоростями и с большой дальностыо, требуют постановки двигателей, которые сочетали бы в себе преимущества ТРД с преимуществами винтомоторной установки на малых скоростях полета. К таким двигателям относятся турбовинтовые двигатели (ТВД).

Турбовинтовым двигателем называется газотурбинный авиационный двигатель, в котором турбина развивает мощность, большую потребной для вращения компрессора, и этот избыток мощности используется для вращения воздушного винта. Принципиальная схема ТВД показана на рис. 109.

Как видно из схемы, турбовинтовой двигатель состоит из тех же узлов и агрегатов, что и турбореактивный. Однако в отличие от ТРД на турбовинтовом двигателе дополнительно смонтированы воздушный винт и редуктор. Для получения максимальной мощности двигателя турбина должна развивать большие обороты (до 20000 об/мин). Если с этой же скоростью будет вращаться воздушный винт, то коэффициент полезного действия последнего будет крайне низким, так как наибольшего значения к. п. д. винта на расчетных режимах полета достигает при 750-1 500 об/мин.


Для уменьшения оборотов воздушного винта по сравнению с оборотами газовой турбины в турбовинтовом двигателе устанавливается редуктор. На двигателях большой мощности иногда используют два винта, вращающихся в противоположные стороны, причем работу обоих воздушных винтов обеспечивает один редуктор.

В некоторых турбовинтовых двигателях компрессор приводится во вращение одной турбиной, а воздушный винт - другой. Это создает благоприятные условия для регулирования двигателя.

Тяга у ТВД создается главным образом воздушным винтом (до 90%) и лишь незначительно за счет реакции газовой струи.

В турбовинтовых двигателях применяются многоступенчатые турбины (число ступеней от 2 до 6), что диктуется необходимостью срабатывать на турбине ТВД большие теплоперепады, чем на турбине ТРД. Кроме того, применение многоступенчатой турбины позволяет снизить ее обороты и, следовательно, габариты и вес редуктора.

Назначение основных элементов ТВД ничем не отличается от назначения тех же элементов ТРД. Рабочий процесс ТВД также аналогичен рабочему процессу ТРД. Так же, как и в ТРД, воздушный поток, предварительно сжатый во входном устройстве, подвергается основному сжатию в компрессоре и далее поступает в камеру сгорания, в которую одновременно через форсунки впрыскивается топливо. Образовавшиеся в результате сгорания топливовоздушной смеси газы обладают высокой потенциальной энергией. Они устремляются в газовую турбину, где, почти полностью расширяясь, производят работу, которая затем передается компрессору, воздушному винту и приводам агрегатов. За турбиной давление газа практически равно атмосферному.

В современных турбовинтовых двигателях сила тяги, получаемая только за счет реакции вытекающей из двигателя газовой струи, составляет 10-20% суммарной силы тяги.

Двухконтурные турбореактивные двигатели

Стремление повысить тяговый коэффициент полезного действия ТРД на больших дозвуковых скоростях полета привело к созданию двухконтурных турбореактивных двигателей (ДТРД).

В отличие от ТРД обычной схемы в ДТРД газовая турбина приводит во вращение (помимо компрессора и ряда вспомогательных агрегатов) низконапорный компрессор, называемый иначе вентилятором второго контура. Привод вентилятора второго контура ДТРД может осуществляться и от отдельной турбины, располагаемой за турбиной компрессора. Простейшая схема ДТРД представлена на рис. 110.


Первый (внутренний) контур ДТРД представляет собой схему обычного ТРД. Вторым (внешним) контуром является кольцевой канал с расположенным в нем вентилятором. Поэтому двухконтурные турбореактивные двигатели называют иногда турбовентиляторными.

Работа ДТРД происходит следующим образом. Набегающий на двигатель воздушный поток поступает в воздухозаборник и далее одна часть воздуха проходит через компрессор высокого давления первого контура, другая - через лопатки вентилятора (компрессора низкого давления) второго контура. Так как схема первого контура представляет собой обычную схему ТРД, то и рабочий процесс в этом контуре аналогичен рабочему процессу в ТРД. Действие вентилятора второго контура подобно действию многолопастного воздушного винта, вращающегося в кольцевом канале.

ДТРД могут найти применение и на сверхзвуковых летательных аппаратах, но в этом случае для увеличения их тяги необходимо предусматривать сжигание топлива во втором контуре. Для быстрого увеличения (форсирования) тяги ДТРД иногда осуществляется сжигание дополнительного топлива либо в воздушном потоке второго контура, либо за турбиной первого контура.

При сжигании дополнительного топлива во втором контуре необходимо увеличивать площадь его реактивного сопла для сохранения неизменными режимов работы обоих контуров. При несоблюдении этого условия расход воздуха через вентилятор второго контура уменьшится вследствие повышения температуры газа между вентилятором и реактивным соплом второго контура. Это повлечет за собой снижение потребной мощности для вращения вентилятора. Тогда, чтобы сохранить прежние числа оборотов двигателя, придется в первом контуре снизить температуру газа перед турбиной, а это приведет к уменьшению тяги в первом контуре. Повышение суммарной тяги будет недостаточным, а в некоторых случаях суммарная тяга форсированного двигателя может оказаться меньше суммарной тяги обычного ДТРД. Кроме того, форсирование тяги связано с большими удельными расходами топлива. Все эти обстоятельства ограничивают применение данного способа увеличения тяги. Однако форсирование тяги ДТРД может найти широкое применение при сверхзвуковых скоростях полета.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения. Турбина низкого давления газотурбинного двигателя включает ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами на задней опоре статора. Лабиринтное уплотнение турбины выполнено двухъярусным. Внутренний ярус образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины. Внешний ярус образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины. Уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо. Внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью. Между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора. Рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы отношение внутреннего диаметра на выходе из проточной части турбины к диаметру рабочей поверхности внутреннего фланца лабиринтного уплотнения составляло 1,05 1,5. Изобретение позволяет повысить надежность турбины низкого давления газотурбинного двигателя. 3 ил.

Рисунки к патенту РФ 2507401

Изобретение относится к турбинам низкого давления газотурбинных двигателей авиационного применения.

Известна турбина низкого давления газотурбинного двигателя с задней опорой, в которой лабиринтное уплотнение, отделяющее заднюю разгрузочную полость турбины от проточной части на выходе из турбины, выполнено в виде одного яруса. (С.А.Вьюнов, «Конструкция и проектирование авиационных газотурбинных двигателей», Москва, «Машиностроение», 1981 г., стр.209).

Недостатком известной конструкции является низкая стабильность давления в разгрузочной полости турбины из-за нестабильной величины радиальных зазоров в лабиринтном уплотнении, особенно на переменных режимах работы двигателя.

Наиболее близкой к заявляемой конструкции является турбина низкого давления газотурбинного двигателя, включающая ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами лабиринта, установленными на задней опоре статора (патент US № 7905083, F02K 3/02, 15.03.2011).

Недостатком известной конструкции, принятой за прототип, является повышенная величина осевой силы ротора турбины, что снижает надежность турбины и двигателя в целом из-за низкой надежности радиально-упорного подшипника, воспринимающего повышенную осевую силу ротора турбины.

Технический результат заявленного изобретения заключается в повышении надежности турбины низкого давления газотурбинного двигателя за счет снижения величины осевой силы ротора турбины и обеспечения стабильности осевой силы при работе на переходных режимах.

Указанный технический результат достигается тем, что в турбине низкого давления газотурбинного двигателя, включающей ротор, статор с задней опорой, лабиринтное уплотнение, выполненное с внутренним и внешним фланцами, установленными на задней опоре статора, лабиринтное уплотнение турбины выполнено двухъярусным, при этом внутренний ярус лабиринтного уплотнения образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины, а внешний ярус лабиринтного уплотнения образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины, причем уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, а внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью, при этом между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора, а рабочая поверхностью внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

где D - внутренний диаметр на выходе из проточной части турбины,

Выполнение лабиринтного уплотнения на выходе из турбины низкого давления двухъярусным, располагая ярусы уплотнения таким образом, что внутренний ярус образован двумя направленными к оси турбины уплотнительными гребешками лабиринта и направленной к проточной части турбины рабочей поверхностью внутреннего фланца лабиринтного уплотнения, а внешний ярус образован направленными к проточной части турбины уплотнительными гребешками лабиринта и направленными к оси турбины рабочими поверхностями внешнего фланца лабиринтного уплотнения, позволяет обеспечить надежную работу лабиринтного уплотнения на переходных режимах работы турбины, что обеспечивает стабильность осевой силы, действующей на ротор турбины, и повышает ее надежность.

Выполнение уплотнительных гребешков лабиринта внутреннего яруса уплотнения с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, обеспечивает снижение вибронапряжений в лабиринте и уменьшение радиальных зазоров между гребешками лабиринта и фланцами лабиринтного уплотнения.

Выполнение внешнего фланца лабиринтного уплотнения с наружной замкнутой воздушной полостью, а также размещение между проточной частью турбины и внешним фланцем лабиринтного уплотнения кольцевой заградительной стенки, установленной на задней опоре статора, позволяет существенно снизить темп нагрева и охлаждения внешнего фланца лабиринтного уплотнения на переходных режимах, приблизив его таким образом к темпу нагрева и охлаждения внешнего яруса лабиринтного уплотнения, что обеспечивает стабильность радиальных зазоров между статором и ротором в уплотнении и повышает надежность турбины низкого давления за счет поддержания стабильного давления в разгрузочной затурбинной полости.

Выбор соотношения D/d=1,05 1,5 обусловлен тем, что при D/d<1,05 снижается надежность работы лабиринтного уплотнения из-за воздействия на уплотнение высокотемпературного газа, выходящего из турбины низкого давления.

При D/d>1,5 снижается надежность газотурбинного двигателя за счет снижения осевой разгрузочной силы, действующей на ротор турбины низкого давления.

На фиг.1 изображен продольный разрез турбины низкого давления газотурбинного двигателя.

На фиг.2 - элемент I на фиг.1 в увеличенном виде.

На фиг.3 - элемент II на фиг.2 в увеличенном виде.

Турбина 1 низкого давления газотурбинного двигателя состоит из ротора 2 и статора 3 с задней опорой 4. Для уменьшения осевых усилий от газовых сил, действующих на ротор 2 на его выходе, между диском последней ступени 5 ротора 2 и задней опорой 4 выполнена разгрузочная полость 6 повышенного давления, которая надувается воздухом из-за промежуточной ступени компрессора (не показано) и отделена от проточной части 7 турбины 1 двухъярусным лабиринтным уплотнением, причем лабиринт 8 уплотнения зафиксирован резьбовым соединением 9 на диске последней ступени 5 ротора 2, а внутренний фланец 10 и внешний фланец 11 лабиринтного уплотнения закреплены на задней опоре 4 статора 3. Внутренний ярус лабиринтного уплотнения образован рабочей поверхностью 12 внутреннего фланца 10, направленной (обращенной) в сторону проточной части 7 турбины 1, и двумя уплотнительными гребешками 13, 14 лабиринта 8, направленными к оси 15 турбины 1. Внутренние стенки 16,17 соответственно гребешков 13, 14 выполнены параллельными между собой. Между внутренними стенками 16 и 17 установлено демпфирующее кольцо 18, способствующее снижению вибронапряжений в лабиринте 8 и уменьшению радиальных зазоров 19 и 20, соответственно, между лабиринтом 8 ротора 2 и фланцами 10, 11. Внешний ярус лабиринтного уплотнения образован рабочей поверхностью 21 внешнего фланца 11, направленной (обращенной) в сторону оси 15 турбины 1, и уплотнительными гребешками 22 лабиринта 8, направленными к проточной части 7 турбины 1. Внешний фланец 11 лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью 23, ограниченной с внешней стороны стенкой 24 внешнего фланца 11. Между стенкой 24 внешнего фланца 11 лабиринтного уплотнения и проточной частью 7 турбины 1 размещена кольцевая заградительная стенка 25, установленная на задней опоре 4 статора 3 и предохраняющая внешний фланец 11 от высокотемпературного газового потока 26, протекающего в проточной части 7 турбины 1.

Рабочая поверхность 12 внутреннего фланца 10 лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

где D - внутренний диаметр проточной части 7 турбины 1 (на выходе из проточной части 7);

d - диаметр рабочей поверхности 12 внутреннего фланца 10 лабиринтного уплотнения.

Работает устройство следующим образом.

При работе турбины 1 низкого давления на температурное состояние внешнего фланца 11 лабиринтного уплотнения может оказывать влияние изменение температуры газового потока 26 в проточной части 7 турбины 1, что могло бы существенно изменить радиальный зазор 19 и действующую на ротор 2 осевую силу вследствие изменения давления воздуха в разгрузочной полости 6. Однако этого не происходит, так как внутренний фланец 10 внутреннего яруса лабиринтного уплотнения недоступен воздействию газового потока 26, что способствует стабильности радиального зазора 20 между внутренним фланцем 10 и лабиринтными гребешками 13, 14, а также стабильности давления в полости 6 и стабильности осевой силы, действующей на ротор 2 турбины 1.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Турбина низкого давления газотурбинного двигателя, включающая ротор, статор с задней опорой, лабиринтное уплотнение с внутренним и внешним фланцами, установленными на задней опоре статора, отличающаяся тем, что лабиринтное уплотнение турбины выполнено двухъярусным, при этом внутренний ярус лабиринтного уплотнения образован двумя уплотнительными гребешками лабиринта, направленными к оси турбины, и рабочей поверхностью внутреннего фланца лабиринтного уплотнения, направленной к проточной части турбины, а внешний ярус лабиринтного уплотнения образован уплотнительными гребешками лабиринта, направленными к проточной части турбины, и рабочей поверхностью внешнего фланца лабиринтного уплотнения, направленной к оси турбины, причем уплотнительные гребешки лабиринта внутреннего яруса лабиринтного уплотнения выполнены с параллельными внутренними стенками, между которыми установлено демпфирующее кольцо, а внешний фланец лабиринтного уплотнения выполнен с наружной замкнутой кольцевой воздушной полостью, при этом между проточной частью турбины и внешним фланцем лабиринтного уплотнения размещена кольцевая заградительная стенка, установленная на задней опоре статора, а рабочая поверхность внутреннего фланца лабиринтного уплотнения расположена таким образом, чтобы соблюдалось условие:

D/d=1,05 1,5, где

D - внутренний диаметр на выходе из проточной части турбины,

d - диаметр рабочей поверхности внутреннего фланца лабиринтного уплотнения.