Модель структуры белка своими руками. Изваяние невидимого. Очень длинная цепочка

Если по соседству с дачным участком расположен лес, очень вероятно, что некоторые его обитатели захотят поселиться рядом. Как известно, для птиц изготавливаются скворечники, для некоторых зверьков – клетки. Не менее интересно сделать беличий домик своими руками. Тем более, что изготовить его несложно, а если на участке поселятся белки, это только оживит местность.

Чтобы правильно изготовить бельчатник, нужно прежде всего учесть особенности поведения белок:

  1. Домик изготавливается только из древесины. При этом она не обрабатываться морилкой, лаками или красками – любые посторонние запахи отпугнут белок.
  2. Доски или бревна можно брать любые, но они должны быть непременно сухими – мокрое дерево будет очень медленно сохнуть, и если повесить бельчатник из свежего дерева, он не успеет полностью просохнуть к зиме.
  3. Поскольку в наших широтах зимы могут быть достаточно суровыми, то на этапе проектирования домика важно учесть, чтобы все стены были достаточно толстыми, а внутренние поверхности важно выложить сухими теплыми материалами (мхом, хлопковой тканью, салфетками).
  4. Если доска слишком опасная и содержит много щепы, ее необходимо зашкурить, чтобы белочки не поцарапались.

Таким образом, хорошо сделанный бельчатник – это домик, который максимально приближен к условиям натурального (беличьего дупла) и при этом достаточно теплый, чтобы белкам в нем было хорошо даже в морозные дни.

Хорошо сделанный бельчатник – это домик, который максимально приближен к условиям натурального беличьего дупла

Изготовление простой кормушки для белок

Сделать обычную кормушку для белок можно из подручных средств буквально за 1 день.

  1. Создать проект и чертеж домика, на котором точно учесть соотношение размеров всех деталей: днища, боковых стенок и крыши (можно также сделать заднюю стенку и полочки).
  2. Выбрать материал для домика – оптимально подойдет сухая деревянная доска.
  3. Перенести все детали на доску с помощью карандаша и линейки; осторожно выпилить их.
  4. Скрепить все части с помощью гвоздей или саморезов.
  5. Зафиксировать кормушку на дереве с помощью прочной проволоки или хомутов.

Есть и другие, более простые варианты изготовления кормушки – например, из картонной коробки или пластиковой бутылки. Но это очень недолговечные модели, к тому же белки охотнее будут питаться в кормушках, изготовленных из натуральных материалов, а не из искусственных.

Галерея: домик для белки (25 фото)





















Как сделать бельчатник своими руками (видео)

Как сделать домик для белки своими руками из досок

Сделать домик из досок не очень сложно. Важно верно рассчитать размеры всех деталей и надежно скрепить их друг с другом.

Определяемся с размерами и строим чертеж

Перед началом строительства бельчатника важно точно рассчитать все размеры его стен и крыши. Один из проверенных вариантов представлен такими деталями:

  1. Параметры днища и крыши 55 см в длину, 30 см в ширину.
  2. Боковые стенки одинаковы: 45*25 см.
  3. Внутренняя перегородка параметрами 25 см в длину и 20 см в ширину.

Важно! В этом варианте получится обычный домик с плоской крышей. Однако можно сделать ее и сводчатой. Тогда работы станет несколько больше: нужно рассчитать угол свода, параметры кровли и выполнить окончания боковых стенок в виде углов, чтобы домик был полностью герметичен.

Перед началом строительства бельчатника важно точно рассчитать все размеры его стен и крыши

Подготовка материалов и инструментов

Для работы нужно использовать только древесную доску, желательно уже зашкуренную, чтобы не посадить занозы себе и белкам. Принципиальных требований к материалу только 2 – он должен быть необработанным, а толщина стенок в идеале от 1,5-2 см.

Инструменты, которые понадобятся для этой работы, следующие:

  • карандаш и линейка;
  • ножовка по дереву;
  • лобзик (желательно электрический);
  • шуруповерт и саморезы;
  • бумага наждачная;
  • водостойкий клей без запаха.

Для работы нужно использовать только древесную доску

Этапы изготовления домика для белки

Изготовление домика включает в себя 2 больших этапа – выпиливание всех деталей и их соединение в единое целое. Последовательность действий будет такой:

  1. Перенесение всех деталей на деревянную доску с помощью карандаша и линейки. Это очень ответственная задача – погрешности должны быть в пределах 5 мм.
  2. Выпиливание всех прямоугольных деталей по контуру.
  3. Выпиливание в верхней трети одной из боковых сторон круглого отверстия диаметром не более 7 см.
  4. Зашкуривание всех поверхностей, если это необходимо.
  5. Склеивание всех частей с помощью водостойкого клея. Если нет возможности подобрать клей без запаха, лучше вообще им не пользоваться.
  6. Дать всей конструкции просохнуть в течение дня на открытом солнце.
  7. Скрепить саморезами (с помощью шуруповерта) все детали.
  8. Повесить домик на дерево с помощью хомутов или проволоки.

Как сделать кормушку для белок (видео)

Декоративное оформление дома для белки

Домик для белок можно украсить любыми декоративными элементами, которые понравятся. Но главное условие – чтобы они понравились и белкам. Как уже говорилось, эти зверьки не переносят никаких искусственных запахов. Соответственно, красить домик нельзя в любом случае.

Соответственно, доступны только «натуральные» средства декора, например:

  • шишки, которые можно прибить гвоздями к стенами или крыше бельчатника;
  • элементы художественной резьбы по дереву (вариант подходит для домиков из цельных бревен);
  • картины, которые можно предварительно выжечь на доске, из которой затем изготовить стены домика;
  • декор входа – можно сделать подобие крылечка (площадку, как у скворечника); этот элемент имеет и практическую пользу – белкам будет легче попасть внутрь.

Домик для белок можно украсить любыми декоративными элементами, которые понравятся

Как сделать беличий домик из цельного бревна

Сделать домик из цельного бревна будет несколько сложнее – нужно приложить больше усилий, чтобы вырезать все элементы в плотной древесной породе. Однако и преимущества у такого домика перед предыдущей моделью, несомненно, есть:

  • цельная древесина – это полностью натуральный материал, в котором белки будут чувствовать себя как в природном дупле;
  • у таких бельчатников стены толстые и плотные, поэтому они всегда теплее, чем дощатые аналоги;
  • наконец, домик из бревна выглядит более натурально, он хорошо будет смотреться на фоне любого дерева.

Главное условие для создания хорошего домика в этом случае – найти хорошее, достаточно сухое бревно подходящих размеров. Если оно было отпилено от дерева совсем недавно, лучше просушить его в течение месяца на открытом воздухе. Однако если ждать столько долго возможности нет, можно сначала сделать бельчатник, а уже затем просушить готовое изделие, повесив его на дерево.

Сделать домик из цельного бревна будет несколько сложнее

Последовательность действий будет такой:

  1. Заранее определяются размеры. как было описано в примере выше.
  2. От бревна отпиливается кусок толщиной 6-7 см – это будет крыша будущего домика.
  3. Далее отпиливается сам домик – в длину он обычно составляет от 40 до 50 см.
  4. Теперь наступает самый сложный и трудоемкий этап – нужно выдолбить цилиндрическую полость внутри. Главное требование – чтобы ширина стенок была не менее 5 см, чтобы белки не замерзли зимой;
  5. Далее выпиливается круглый вход – в диаметре не более 7 см, животным этого вполне достаточно.
  6. По возможности перед входом можно прикрепить ветку, по которой белке будет удобно попасть в свой дом.

Готовый бельчатник фиксируется к дереву, как было описано выше.

Прикрепить домик можно с помощью хомутов или проволоки, но не приколачивая его к дереву – это очень навредит ему

Правила установки бельчатника в саду

Вот несколько простых правил, которые нужно учесть на этапе размещения бельчатника на дереве:

  1. Прикрепить домик можно с помощью хомутов или проволоки. но не приколачивая его к дереву – это очень навредит ему.
  2. Следует правильно выбрать дерево – оно должно быть достаточно толстым по всему протяжению и не раскачиваться от ветра. Например, молодая, невысокая береза для таких целей явно не подойдет.
  3. Если есть возможность, то лучше всего зафиксировать домик на хвойных деревьях – так белки почувствуют себя как дома; также подходит дуб, в последнюю очередь предпочтение можно отдать березе или осине.
  4. Высота расположения бельчатника должна быть не менее 5 метров.
  5. Лучше всего прикрепить его с южной или восточной стороны, на которую попадает максимальное количество света. Однако если по этим сторонам постоянно дуют ветры, то прикрепить домик надо на другом месте.

Правильно выбрать место для крепления кормушки не менее важно, чем качественно изготовить ее. Белки – очень боязливые зверушки, и они не будут жить даже в очень хорошем домике, если сочтут его положение недостаточно безопасным.

»
Наземные радиолокаторы позволяют вести контроль пути по направлению. При полете от радиолокатора контроль и исправление пути осу­ществляется в следующем порядке: 1. Запросить у диспетчера место самолета. 2. Перевести полученный азимут в МПС, сравнить его с ЗМПУ и определить боковое уклонение МПС = А — (± Δм); БУ = МПС — ЗМПУ. В тех случаях, когда угол схождения между мериди...

»
Средний крутящий момент ротора равен:

»
Заход на посадку по кратчайшему пути предусматривает под­ход к заданным точкам прямоугольного маршрута. В основу пост­роения такого захода принят прямоугольный маршрут. Однако выполняется он не полностью, а от траверза ДПРМ или от одного из разворотов. Снижение с маршрута и заход на посадку выполняются при тех же условиях и с теми же ограничениями, что и заход с прямой.

»
Для предотвращения случаев попадания в районы с опас­ными для полетов метеоявлениями необходимо: 1) перед полетом тщательно изучить метеообстановку по трас­се и прилегающим к ней районам; 2) наметить порядок обхода опасных условий погоды; 3) наблюдать в полете за изменением погоды, особенно за развитием явлений, опасных для полетов; 4) периодически получать по радио сведения о сос...

»
Формулы теории Глауэрта - Локка выведены для ротора, имеющего любое число лопастей. Каждая лопасть прикреплена к втулке горизонтальным шарниром, позволяющим ей производить взмахи в плоскости, проходящей через продольную ось лопасти и ось ротора. Вертикальный шарнир крепления лопасти, позволяющий ей колебаться в плоскости вращения, не принимается во внимание при рассмотрении движения лопасти. Хорда...

»
Модель вертолета «Пэнни» (рис. 54) разработал амери­канский авиамоделист Д. Буркхем. Этот миниатюрный вер­толет с резиновым мотором снабжен хвостовым винтом и Имеет автомат стабилизации. Основой модели является силовая рейка из сосны длиной 114 мм и сечением 5x5 мм. Сбоку приклеивают пластину из пенопласта толщиной 5 мм и закругляют по виду сбоку; получается своеобразный кор­пус модели. Сверху...

»
Если ось ротора и ц. т. автожира лежат в плоскости симметрии автожира (фиг. 92), то при установившемся прямолинейном полете на автожир буду действовать следующие крепящие моменты: 1) момент на головке ротора согласно уравнению (78); 2) момент от поперечной силы, равный: 3) при моторном полете реактивный момент пропеллера, равный:

»
Аэродинамический расчет автожира делается с целью определения его летных характеристик, как то:1) горизонтальных скоростей - максимальных и минимальных, без снижения;2) потолка;3) скороподъемности;4) скорости по траектории при крутом планировании.

»
Запуск воздушных змеев интересное спортивное занятие для школьников и для взрослых. В настоящее время в некоторых странах проводятся пра­здники и фестивали воздушны) змеев. В США, в Бостоне, уст­раивают соревнование на луч­ший бумажный змей. В Японии ежегодно проходит националь­ный фестиваль воздушных зме­ев, на котором запускают змеи длиной 20—25 м. С 1963 года по всей Польше проводит...

»
Цилиндрические проекции получаются путем проектирования поверхности глобуса на боковую поверхность касательного или секущего цилиндра. В зависимости от положения оси цилиндра от­носительно оси вращения Земли цилиндрические проекции могут быть: 1) нормальные — ось цилиндра совпадает с осью вращения Земли; 2) поперечные — ось цилиндра перпендикулярна к оси вращения Земли; 3) кос...

»
Азимут и дальность до самолета опре­деляются диспетчером по экрану индика­тора, на котором самолет изображается в виде ярко светящейся метки. Азимут от­считывается относительно северного на­правления истинного меридиана по шка­ле индикатора, которая имеет оцифровку от 0 до 360°. Наклонная дальность до самолета определяется на индикаторе по масштабным кольцам (рис. 16.1). Точность определения даль...

»
Для обеспечения регулярности полетов командир корабля имеет право принять решение о вылете при неполной уверенности по метеорологическим условиям в возможности посадки на аэродроме назначения. Такое решение может быть принято только при полной гарантии, что по условиям погоды посадка самолета возможна на одном из запасных аэродромов, включая и аэродром вылета. При приеме решения на вылет может слу...

»
В практике авиамоделизма наибольшее распространение получили вертолеты одновин­товой схемы. Простейшая мо­дель вертолетов лишь по прин­ципу полета напоминает про­тотип, будет вернее ее назвать «летающим винтом». А среди авиамоделистов за таким вин­том укрепилось название «муха». Простейший вертолет — «муха» (рис. 51) состоит из двух деталей — воздушного винта и стержня.

»
Условия самолетовождения над безориентирной местностью. Безориентирной называется местность с однообразным фо­ном. Это — тайга, степь, пустыня, тундра, большие лесные мас­сивы, а также малообследованные районы, для которых нет точ­ных карт. Самолетовождение над безориентирной местностью характеризуется следующими условиями:

»
Радиодевиационные работы проводятся штурманом с целью определения, компенсации радиодевиации и составления графика остаточной радиодевиации в следующих случаях: 1) при установке на самолет, нового радиокомпаса или отдель­ных его блоков; 2) после выполнения регламентных работ, при которых заме­нялись отдельные блоки радиокомпаса; 3) при обнаружении в полете ошибок в показаниях указателя курсовы...

»
Высотой полета Н называется расстояние по вертикали от самолета до уровня, принятого за начало отсчета. Высота из­меряется в метрах. Знание высоты полета необходимо экипажу для выдерживания заданного профиля полета и предотвращения столкновения самолета с земной поверхностью и искусственными препятствиями, а также для решения некоторых навигационных задач. В самолетовождении в зависимости от уровн...

»
Для проверки НИ-50БМ перед полетом необходимо: 1. Включить электропитание прибора по переменному и по­стоянному току. 2. Включить и подготовить к работе ГИК. Показания ГИК после согласования и показания автомата курса навигационного индикатора не должны отличаться более чем на ±2°. 3. Установить на автомате курса и задатчике ветра МУК=МК самолета. 4. Ввести в задатчик ветра направлен...

»
Так уж распорядилась исто­рия, что летательным аппара­том, на котором был осуществ­лен первый полет человека, явился тепловой воздушный шар. Давно замечено, что вверх поднимается и дым и нагретый воздух. Первые попытки постро­йки и полеты на тепловом шаре относятся к середине XVIII ве­ка. Но достоверность этих фак­тов пока не подтверждена до­кументально. Одними из первых, кто хотел использовать те...

»
Для изготовления модели планера «ДОСААФ» (рис. 18) кроме бумаги, ножниц, линей­ки и карандаша понадобится еще и клей. Лучше всего при­менять клей ПВА, а бумагу — из альбомов для рисования. С рисунка по клеткам пере­носят форму фюзеляжа на сло­женную вдвое бумажную заго­товку и вырезают его. Затем таким же образом вырезают крыло, груз, лонжерон и киль. На шаблонах частей стрелкой указано...

»
Когда полет начался днем, а заканчивается ночью или наоборот, необходимо знать, в какое время произойдет встреча самолета с темнотой или рассветом и какова продолжительность ночного по­лета. Время и место встречи самолета с темнотой или рассветом мож­но рассчитать с помощью НЛ-10М или по графику. Рассмотрим порядок такого расчета с помощью НЛ-10М.

»
Если при проектировании автожира имеются в виду его основные характерные качества, как то: крутой угол посадки и низкая мини­мальная скорость горизонтального полета без снижения, то выбор диаметра ротора нужно делать, задавшись такой нагрузкой w на единицу поверхности ометаемого диска ротора, при которой вертикальная скорость крутой посадки была бы безопасна. Величины нагрузки на ометаемую ротором...

»
Навигационный индикатор может быть использован в полете следующими методами: 1. Методом контроля пройденного расстояния. 2. Методом контроля оставшегося расстояния (методом при­хода стрелок к нулю). 3. Методом условных координат.

»
Чтобы рассчитать время и место встречи самолетов, летящих на встречных курсах, необходимо знать расстояние между самолетами S", путевые скорости самолетов W1 и W2 и время пролета самоле­тами контрольных ориентиров. Время сближения самолетов tсбл= S"/ W1 + W2

»
Умножение и деление чисел на НЛ-10М выполняется по шка­лам 1 и 2 или 14 и 15. При пользовании этими шкалами значения чисел, нанесенных на них, можно увеличивать или уменьшать в любое число раз, кратное десяти. Для умножения чисел по шкалам 1 и 2 необходимо прямо­угольный индекс с цифрой.10 или 100 шкалы 2 установить на мно­жимое, а пробив множителя отсчитать по шкале 1 искомое произ­ведение.

»
Выше было сказано, что несущий винт-ротор при движении автожира свободно вращается - авторотирует. Состояние устойчивой авторотации несущего винта является абсолютно необходимым условием при всех возможных летных режимах автожира, потому что необходимая подъемная сила развивается только на авторотирующем винте. Кроме того, лопасти ротора, при наличии шарнирного крепления к втулке, могли при отсутс...

»
Говорить об оснащении круж­ка пионерского лагеря станоч­ным оборудованием, видимо, не имеет смысла. Это под силу лишь крупным лагерям и требует специального по­мещения. Как показывает прак­тика, станок «Умелые руки» вполне доступен любому круж­ку и обладает широкими воз­можностями в работе. Для нормальной работы авиакружка необходим инстру­мент общего и индивидуаль­ного пользования. Основной инстр...

»
Полет от наземного радиопеленгатора может быть осуществ­лен в том случае, когда он расположен в исходном пункте маршру­та (ИПМ), поворотном пункте маршрута (ППМ) или в любой другой точке на ЛЗП.При использовании УКВ радиопеленгаторов для контроля пути по направлению запрашивается в телефонном режиме пеленг от радиопеленгатора на самолет (пря­мой пеленг — ПП) словами «Дайте прямой пеленг». Пр...

»
Цель дан­ной игры — достижение наи­большей дальности полета. Перед началом надо огово­рить, сколько раз каждый участник будет запускать свою модель, иными словами, сколь­ко будет зачетных полетов (обычно — три). А перед ни­ми надо дать возможность совершить один-два трениро­вочных (пристрелочных) за­пуска. Очередность выхода на старт обычно определяют же­ребьевкой.

»
Контроль готовности экипажа к полету после его предполетной штурманской подготовки осуществляют штурманы (авиаотряда, авиаэскадрильи, дежурные штурманы аэропортов), а при их отсут­ствии — диспетчеры АДП аэропортов вылета. В летных учебных заведениях готовность экипажа к полету кон­тролируют штурманы авиаэскадрилий (авиаотрядов) и руководи­тель полетов. Флаг-штурман летного учебного заведения...

»
Для тех, кто не имеет возможности построить модель из пенопласта, предлагаем из­готовить электролет наборной конструкции (рис. 46). Основной материал для крыла — бамбук. Из него де­лают кромки, нервюры и законцовки: для кромок — сечением 2x1,5 мм, для дру­гих частей—1x1 мм. Лон­жерон выстрагивают из сос­новой рейки сечением 1,5Х1,5 мм. Все соединения выполняют с помощью ниток...

Каким быть автоконструкторскому кружку? Какие в нем следует строить автомобили? Как организовать занятия? Эти да и многие другие вопросы были затронуты в недавних публикациях М. Л. Ларкина и И. Ф. Рышкова «Проект - модель - машина» и «Конструктору автомобилей - авто-конструктор!» («М-К» № 1, 1979 г.). Более всего наших читателей заинтересовала техническая сторона дела - устройство модульного микроавтомобиля. Сегодня мы предлагаем последнюю разработку автоконструкторской лаборатории КЮТа Сибирского отделения Академии наук СССР - микроавтомобиль «Белка».

У этого небольшого, изящного прогулочно-спортивного «джипа» всего за полчаса можно коренным образом изменить весь облик. Стоит переставить два-три элемента конструкции - и перед вами багги. А если появится желание прекратить «Белку» в туристский автомобиль, то достаточно установить на нее съемный тент-обтекатель. Без особого труда превращается она и в легкий грузовичок. При необходимости автомобиль легко разбирается и складывается в собственный грузовой кузов, как в коробку.

Несмотря на сравнительно небольшие размеры («Белка» свободно размещается даже на письменном столе!), это не игрушка, а самый настоящий автомобиль. Его скорость около 40 км/ч, а горючего в бензобаке хватает на 100 км пути.

Как возникла идея модульного автомобиля? Прежде всего нас не устраивали сроки проектирования и строительства «традиционных» машин - наши мальчишки успевали вырасти, окончить школу и уйти из клуба, так и не сев ни разу за руль.

Не подходили для нас и схемы с использованием каркаса и нетехнологичных в условиях кружка профилированных панелей. Такие конструкции, помимо того, что на их воплощение требуется слишком много времени и сил, к тому же абсолютно неизменяемы - другую машину сделать на базе старой весьма затруднительно. Строить же новый автомобиль без использования элементов старого накладно.

1 - поперечная рессора, 2 - поперечная тяга, 3 - маятник передней подвески, 4 - проушина крепления передней подвески, 5 - хребтовая рама, 6 - рычаг запуска двигателя, 7 - поперечная балка рамы, 8 - проушины крепления маятника задней подвески, 9 - маятник задней подвески, 10 - заднее колесо, 11 - продольная рессора, 12 - двигатель ВП-150.

И последнее, что побудило взяться за разработку трансформируемого микроавтомобиля, - это проблема хранения. Число наших разработок медленно, но неуклонно возрастало; несколько машин мы держали в лаборатории, остальные - в гараже. Интерес к ним пропадал, поскольку ребятам хотелось попробовать силы в строительстве именно своего автомобиля, и постепенно труд нескольких поколений кружковцев превращался в металлолом.

Все это и заставило нас обратиться к принципиально новой идее - спроектировать многоцелевой блочный (модульный) автомобиль.

Были, правда, и возражения: некоторые думали, что проектирование такой машины поставит юного конструктора в жесткие рамки, мешающие полету творческой фантазии. Но большинство ребят склонилось к мысли, что этого не произойдет. Наоборот, ограничения в конструкции дадут возможность юному автостроителю проявить максимум изобретательности при проработке собственного варианта на базе стандартного набора элементов.

Давайте теперь мысленно откроем коробку-кузов и рассмотрим, из чего складывается основа автоконструктора.

Кузов «Белки»-грузовичка представляет собой ящик, собранный из шестимиллиметровой фанеры и окантованный дюралюминиевым уголком. Сверху лежат детали водительского кресла - спинка и сиденье. Они простые - основание (фанера толщиной 6 мм) с наклеенным на него поролоном обтянуто искусственной кожей красного цвета. Габаритные размеры сиденья 570X300 мм.

Под деталями сиденья лежит стальной лист 720X510 мм толщиной 2 мм, оклеенный с одной стороны рифленой резиной, - это днище автомобиля. Двенадцать отверстий Ø 4 мм по кромке листа предназначены для крепления пола к кузову.

Вынув днище, вы обнаружите под ним шесть бортовых панелей, являющихся основой кузова автомобиля, поскольку практически все остальные элементы корпуса крепятся к ним.

В центре ящика между бортовыми панелями оставлено место для четырех колес 3,50-5 модель В-25 А. В них вложены восемь колесных дисков и две ступицы с подшипниками и осями в сборе с поворотными цапфами и продольными тягами.

Еще ниже лежат две качалки переднего моста, сваренные из газовых труб с внешним Ø 20 мм. Здесь же находится и подмоторная рама, служащая одновременно основанием заднего моста и его подвеской. Сварена она из газовый труб Ø 30 мм.

В тот же ящик-кузов уложена и хребтовая рама автомобиля квадратного сечения 40X40 мм с приваренными к ней проушинами для крепления качалок переднего и заднего мостов. Под рамой лежат две рессоры (передняя - поперечная и задняя - продольная) и четыре стремянки с наклад« нами для крепления подвески к раме. Полосы рессор можно подобрать от автомобиля «Москвич» любой марки.

В комплект конструктора входят также рулевое колесо, рулевая колонка с кронштейнами и поводками и поперечные тяги с шарнирами. В отдельном пакете - педали управления дроссельной заслонкой карбюратора, сцеплением и тормозами. На самое дно кузова уложены панель капота, ветровое стекло, задняя опора спинки сиденья (она же - капот бензобака), передние и задние крылья, приборный щиток и два стальных уголковых профиля 20X20 мм длиной 720 мм. В специальном отсеке находятся фары и подфарники, габаритные огни, тросы, спидометр, тумблеры, комплект элементов электропроводки и пакет крепежных деталей - болтов, винтов, шайб и гаек. Не забыты и торцевые гаечные ключи, отвертки.

Двигатель ВП-150 упакован вместе с бензобаком, шлангом бензопровода и кикстартером в отдельном ящике.

Комплект деталей автомобиля налицо. Попытаемся теперь вместе собрать один из вариантов автоконструктора, в частности, микроавтомобиль «Белка»-«джип».

Начинать сборку лучше всего с шасси. Для этого на монтажную площадку следует уложить хребтовую раму и к ней двумя болтами М10 шарнирно подсоединить подмоторную раму и качалки переднего моста. Концы передней поперечной рессоры вводим в опорные скобы качалок переднего моста, а центр ее закрепляем двумя стремянками на раме.

В левую втулку подмоторной рамы вставляется вал двигателя, а сам он пристыковывается к раме двумя стопзрнымй болтами. Ось свободно катящегося колеса с подшипниками и обоймой вставляется в правую втулку подмоторной рамы. После этого можно монтировать заднюю продольную рессору, один из концов которой должен находиться в опорной скобе подмоторной качающейся рамы, а другой фиксируется двумя стремянками на хребтовой раме.

Теперь приступим к монтажу задних колес. Первым делом следует собрать с помощью трех болтов и гаек покрышку с камерой и оба диска и накачать колесо. Колеса насаживаются на шпильки ступиц задних осей, снаряженных тормозными колодками и дисками. Задний мост, таким образом, оказывается полностью собранным.

1 - эмблема, 2 - приборный щиток, 3 - капот, 4 - опора спинки, 5, 17 - боковины заднего крыла, 6, 18 - основание кузова, 7, 13 - бортовые панели, 8, 14 - боковины переднего крыла, 9, 15, 16 - передние и задние крылья (размеры в скобках - для задних крыльев), 10 - передняя панель, 11 - накладка, 12 - днище, 19 - задняя панель.

Следующий этап - сборка переднего моста. Сначала на кулаки качалок устанавливаются две поворотные цапфы с полуосями передних колес, закрепляются шкворнями И шплинтуются. На полуоси надеваются ступицы с запрессованными в них подшипниками. Сборка передних колес кичем не отличается от соответствующих операций с задними.

Остается поставить на место рулевую колонку и поперечные тяги, и работу над шасси можно считать законченной.

Теперь настала очередь кузова. Для начала возьмем пару панелей основания кузова и скрепим их четырехмиллиметровыми болтами. Далее монтируем бортовые панели, крылья с обязательной вставкой шумопоглощающих элементов. В передней и задней частях кузова в образовавшиеся при сборке проемы устанавливаем два распорных уголка и закрепляем их четырьмя болтами. К отбортовкам крыльев приворачиваем днище.

Далее последовательно закрепляются капот (не забудьте о прокладках!), ветровое стекло, приборный щиток (крепится винтами-саморезами), передние фары и задние габаритные огни. И в заключение в готовый корпус устанавливается бензобак, а на приборную доску - спидометр, тумблеры и замок зажигания. Корпус почти собран, остается поставить на место педали и рычаги управления и смонтировать электропроводку.

Теперь кузов можно стыковать с шасси, установить тросики управления и бензопровод. Автомобиль «Белка»-«джип» собран. Можно отправляться в путь.

М. ЛАРКИН, руководитель лаборатории опытного

моделирования и конструирования КЮТа СО АН CCCР

Разделы: Биология

Темы, изучаемые в разделе общая биология, по сравнению с материалом ботаники, зоологии, вызывают у учащихся затруднения в понимании и запоминании. Как заставить себя запомнить непонятный, сложный материал урока? Задача учителя так преподнести непонятную тему, чтобы ученик не заметил ни одного сложного момента.

Память процесс сложный. К процессам памяти относятся запоминание, воспроизведение, сохранение, а также забывание материала.

Запоминание – процесс запечатления в сознании поступающей информации в виде образов, мыслей (понятий), переживаний и действий.Объясняя сложную тему курса общей биологии, учитель может использовать образные приемы запоминания (перевод информации в образы, графики, схемы, картинки). Образная память бывает разных типов: зрительная, слуховая, моторно-двигательная, вкусовая, осязательная, обонятельная, эмоциональная. По степени активности протекания этого процесса принято выделять два вида запоминания: непреднамеренное (или непроизвольное) и преднамеренное (или произвольное).

Сохранение - процесс активной переработки, систематизации, обобщения материала, овладения им. Сохранение заученного зависит от глубины понимания. Хорошо осмысленный материал запоминается лучше.

Успешность воспроизведения зависит от умения восстановить связи, которые были образованы при запоминании, и от умения пользоваться планом при воспроизведении.

Забывание - естественный процесс. Многое из того, что закреплено в памяти, со временем в той или иной степени забывается. И бороться с забыванием нужно только потому, что часто забывается необходимое, важное, полезное. Забывается в первую очередь то, что не применяется, не повторяется, к чему нет интереса , что перестает быть для человека существенным. Детали забываются скорее, обычно дольше сохраняются в памяти общие положения, выводы.

Забывание может быть обусловлено различными факторами. Первый и самый очевидный из них - время. Менее часа требуется, чтобы забыть половину механически заученного материала.

Для уменьшения забывания необходимо:

  1. понимание, осмысление информации;
  2. повторение информации.

Итак, из выше изложенного можно сделать вывод, сохраняется в памяти тот материал урока, который учеником понят, осмыслен и вызывает у него интерес, не вызывает затруднений.

Для облегчения восприятия материала, процесса синтеза белка в клетке, который по-другому называется трансляцией , использую динамическую схему-модель этого процесса. Данную модель можно быстро и легко изготовить, используя плотную бумагу, цветную бумагу, ножницы и клей.

Этапы изготовления динамической модели:

  1. Из плотной бумаги вырезаем модель рибосомы (фото 1);
  2. Между малой и большой субъединицами слева и справа делаем два больших разреза (фото 2);
  3. Из плотной бумаги вырезаем полоску шириной чуть меньше высоты разрезов на рибосоме – это модель информационной РНК (фото 3);
  4. Измеряем расстояние между разрезами на модели рибосомы, делим полученный результат на два;
  5. На модель иРНК наносим итоговый результат (фото 3);
  6. Из цветной бумаги вырезаем прямоугольники и приклеиваем их на модель иРНК (фото 4). Каждый цветной квадратик символизирует триплет нуклеотидов. На фото 4 хорошо видно, что рибосома, двигаясь по иРНК, захватывает два кодона (триплета);
  7. Из плотной бумаги изготавливаем модели транспортных РНК (фото 5);
  8. На тРНК. на верхушке, расположен триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Он получил название антикодон. К верхней части тРНК, антикодону, приклеиваем полоски цветной бумаги (фото 6);
  9. Из плотной цветной бумаги вырезаем модели аминокислот (фото 7);
  10. На иРНК, на акцепторном конце тРНК, который является «посадочной площадкой» для аминокислоты, на аминокислотах делаем разрезы (фото 8, 9);
  11. Модели рибосомы, иРНК, тРНК, аминокислот готовы.

Использование динамической модели для объяснения процесса трансляции.

Трансляция – это перевод последовательности нуклеотидов молекулы иРНК в последовательность аминокислот молекулы белка.

Ученикам очень трудно представить, как работает рибосома, как осуществляется перевод с языка нуклеотидов на язык аминокислот. Понять данный процесс поможет сделанная модель.

  1. На доске закрепляем, (используя скотч) модель рибосомы с иРНК (фото 10);
  2. Рибосома захватывает два триплета - кодона (фото 10);
  3. Закрепляем тРНК с аминокислотами к иРНК, используя принцип комплементарности, в данном случае цвет кодона, антикодона, аминокислоты. Комплементарность (от латинского complementum) – дополнение. (фото 11);
  4. Начало будущего белка обозначается триплетом АУГ (на схеме квадратик синего цвета), который является знаком начала трансляции. Так как этот кодон кодирует аминокислоту метионин, то белки (за исключением специальных случаев) начинаются с метионина.
  5. Аминокислота метионин (на схеме она синего цвета), отделяется от тРНК и присоединяется к аминокислоте на соседней тРНК с образование пептидной связи. Так начинает расти цепочка белка. (фото 12);
  6. Первая тРНК отделяется от иРНК, рибосома делает «шажок» на один триплет, к нему по принципу комплементарности присоединяется тРНК с аминокислотой и процесс повторяется (фото 13, 14, 15, 16, 17, 18, 19, 20, 21);
  7. Наконец, рибосома доходит до одного из так называемых стоп-кодонов (УАА, УАГ, УГА на схеме они белого цвета). Эти кодоны не кодируют аминокислот, они только лишь показывают, что синтез белка должен быть завершен. (фото 22);
  8. Белковая цепочка отсоединяется от рибосомы, выходит в цитоплазму и формирует присущую этому белку вторичную, третичную, четвертичную структуры (фото 23, 24, 25).

Используя прием образного восприятия данного процесса, ученики легко его усваивают. Начинают работать разные виды памяти: зрительная, слуховая, моторно-двигательная, эмоциональная. Ученикам не надо прилагать усилий для запоминания материала (непроизвольный вид памяти), ученики не испытывают страха в том, что с данной темой они не смогут разобраться.

Схемой легко пользоваться и при объяснении нового материала, и при его закреплении, повторении, как учителю, так и ученику.

Конечно, рассматривая процесс трансляции на компьютере, ученик видит, слышит голос диктора, но не может сам участвовать в этом процессе. Поэтому считаю, что динамичная модель процесса трансляции может помочь учителю более доступно объяснить сложную тему, а ученикам – лучше ее понять.

Это биологические молекулы, выполняющие тысячи специфических функций внутри каждой клетки живого организма. Белки синтезируются в рибосомах в виде длинной полипептидной нити, но затем быстро сворачиваются в свою естественную («нативную») пространственную структуру. Этот процесс называется фолдинг белка. Может показаться удивительным, но этот фундаментальный процесс до сих пор плохо понят на молекулярном уровне. В результате предсказать нативную структуру белка по его аминокислотной последовательности пока не удается. Для того чтобы почувствовать хотя бы некоторые нетривиальные аспекты этой задачи, попытаемся решить ее для следующей исключительно простой модели белковой молекулы.

Пусть белок состоит из совершенно одинаковых звеньев, последовательно соединенных друг с другом (рис. 1). Эта цепочка может изгибаться, и для простоты будем считать, что она изгибается не в пространстве, а только в плоскости. Цепочка имеет определенную упругость на изгиб: если направления двух соседних звеньев образуют угол α (измеряемый в радианах), то такое соединение повышает энергию молекулы на A α 2 /2, где A - некоторая константа размерности энергии. Пусть также у каждого звена по бокам имеется два «контактных участка», которыми звенья могут склеиваться. Каждая такая склейка обладает энергией –B (то есть она понижает энергию цепочки на величину B ). Наконец, будем предполагать, что B меньше A (то есть цепочка достаточно упруга).

Задача

Какая конфигурация молекулы из N звеньев будет наиболее энергетически выгодной? Исследуйте , как меняется эта конфигурация с ростом N .


Подсказка

Наиболее энергетически выгодной является конфигурация с минимальной энергией. Поэтому надо придумать, как устроить большое число «склеек» звеньев (каждая их которых понижает энергию), но при этом не слишком резко изгибать цепочку, чтобы чересчур сильно не увеличивать ее упругую энергию.

В этой задаче не требуется искать абсолютно точную форму цепочки для каждого конкретного числа звеньев. Надо лишь описать характерные «узоры», которые будут возникать при оптимальном фолдинге этой «белковой молекулы», и найти, при каком примерном N молекуле выгодней перестроиться из одной конфигурации в другую.

Решение

Энергия абсолютно прямой цепочки равна нулю. Для того чтобы понизить ее, некоторые звенья должны слипнуться. Но для этого цепочка должна организовать петлю, и наличие петли повышает энергию. Если петля слишком длинная, то большое количество звеньев, которые могли бы связаться друг с другом, остаются без связи. Эти звенья можно соединить, словно на застежке-молнии, укоротив тем самым петлю, но от этого увеличится ее энергия упругости. Поэтому надо найти такую оптимальную длину петли, при которой силы упругости, расширяющие петлю, и силы связи, ее «застегивающие», сбалансированы.

Энергия петли

Пусть имеется петля из m несклеенных звеньев (рис. 2). Характерный угол между соседними звеньями в ней - примерно 2π/m . (На самом деле, этот угол меняется от звена к звену, поскольку наиболее выгодная форма петли вовсе не круговая, но для приближенного исследования наша оценка вполне пойдет.) Таких соединений имеется m штук, поэтому петля обладает энергией 2π 2 A /m . Застегнем ее еще на одно звено. Тогда петля станет короче на два звена, а энергия всей цепочки изменится на величину

Если же, наоборот, разорвать одну связь, то энергия цепочки изменится на

Петля из m звеньев является оптимальной, когда оба эти изменения энергии положительны, то есть с энергетической точки зрения петлю невыгодно ни удлинять, ни укорачивать. Поскольку B много меньше A , ясно, что величина m получится значительно больше единицы. Поэтому для примерной оценки оптимального m эти два неравенства можно заменить одним равенством:

Таким образом, оптимальная длина петли примерно равна

Во всех последующих формулах под буквой m будет подразумеваться именно оптимальная длина петли. Наконец, полезно найти энергию упругости такой оптимизированной петли; она получается равной

Это выражение (энергия петли в m /2 раз больше величины B ) очень удобно для дальнейших вычислений.

Когда появляется петля?

Теперь легко выяснить, при цепочке какой длины будет выгоднее не оставаться прямой, а свернуться в петлю с «двойным хвостиком» длины n . Для этого нужно, чтобы полная энергия такой конфигурации была отрицательна:

Таким образом, если длина цепочки N > m + 2(m /2) = 2m , то ей выгоднее образовать петлю.

Когда появляется вторая петля?

«Двойной хвостик» - это не максимально удобная конфигурация, поскольку в каждом звене «работает» только один из контактных участков, а хотелось бы, чтоб работали оба, хотя бы у некоторых звеньев. Это можно устроить, образовав вторую петлю (рис. 3).

Условие для перехода к двумя петлям, E 1 > E 2 , тогда даст N > 8m .

Очень длинная цепочка

Когда цепочка становится очень длинной, ее удобно сворачивать так, чтобы как можно большее количество звеньев было склеено обоими своими контактными участками. Таким образом мы получаем конфигурацию, напоминающую обрамленное петельками полотно. Если закрыть глаза на то, что соседние петли мешают друг другу, можно провести аналогичное вычисление и найти наиболее выгодное количество петель для заданного N (оно растет пропорционально квадратному корню из N ). Если же учесть, что петли мешают друг другу, то вычисления резко усложнятся. Однако общая структура останется той же: наиболее выгодным будет плоское полотно некоторой формы, обрамленное по краям петельками. Желающие могут попробовать найти оптимальную форму полотна с помощью компьютерного моделирования, а также поразмышлять над аналогичной задачей в трехмерном пространстве.

Послесловие

Эта простая задача, конечно же, не может отразить ни закономерностей фолдинга настоящих белковых молекул, ни тех методов современной теоретической физики, которые применяются при описании белков и полимеров (эта область деятельности, кстати, является вполне серьезным разделом физики конденсированных сред). Цель этой задачи состояла лишь в демонстрации того, как «количество переходит в качество», то есть как при изменении лишь одного численного (а не качественного) параметра задачи может принципиально меняться ее решение.

Задачу можно было бы сделать чуть более «живой» и интересной, если ввести ненулевую температуру. В этом случае оптимальная конфигурация определялась бы не только энергией, но и энтропией, она бы тогда отвечала минимуму так называемой свободной энергии молекулы. При изменении температуры тогда происходил бы настоящий фазовый переход, при котором молекула сама бы распрямлялась, сворачивалась или перестраивалась из одной формы в другую. К сожалению, такая задача потребует методов, которые выходят за рамки школьной программы.

Любопытно также заметить, что теоретическое изучение фолдинга белков вовсе не сводится к одному лишь численному моделированию. В этой, казалось бы, «прямолинейной» задаче вскрываются довольно нетривиальные математические тонкости . Более того, имеются даже работы , в которых для описания этого процесса привлекаются методы квантовой теории поля и теории калибровочных взаимодействий.

Потренироваться на практике в поиске оптимальной конфигурации белка можно на сайте Fold.it .