General Electric готовит революцию в авиационном двигателестроении. Керамические матричные композиты в конструкции двигателя изменяемого цикла с адаптивной технологией (Видео). Какой ракетный двигатель самый лучший? Несколько интересных фактов

Американская компания General Electric завершила начальные испытания прототипа реактивного двигателя изменяемого цикла с адаптивной технологией (ADVENT), сообщает Flightglobal. По данным компании, двигатель достиг высоких значений температур в зоне компрессора и турбины, которые «являются рекордными в истории авиации». В течение 2013 года General Electric также намерена начать масштабные испытания прототипа новой силовой установки.

В новом двигателе американская компания намерена использовать новые легкие и жаропрочные керамические матричные композиты. Кроме того, General Electric удалось получить важные наработки в ходе разработки адаптивного каскада низкого давления для перспективного двигателя ADVENT. Предполагается, что благодаря новым технологиям новый авиадвигатель будет на 25 процентов экономичнее обычных силовых установок .

По предварительным расчетам, ADVENT также будет отличаться увеличенным на 30 процентов диапазоном рабочих режимов и тягой, на 5–10 процентов превосходящей тягу обычных двигателей с фиксированным циклом работы. Начальное проектирование нового двигателя завершилось 8 февраля 2013 года. На ноябрь 2014 года запланирована защита эскизного проекта силовой установки, а все работы планируется завершить до конца 2016 года.

Прототип двигателя на испытательном стенде. Фото с сайта businesswire.com

Все технологии, полученные в ходе разработки ADVENT, будут использованы в перспективных двигателях AETD для боевых самолетов, в разработке которых заинтересованы ВВС США. Новая силовая установка должна уметь переключаться между разными режимами полета ─ сверхзвуковым и дозвуковым. Существующие сегодня двигатели способны работать только в одном из этих режимов. За счет возможности переключения двигателя между режимами и будет достигаться топливная эффективность.

Особенностью нового двигателя станет использование третьего воздушного контура. При взлете и полете на максимальной скорости третий контур будет закрываться, чтобы двигатель мог поддерживать максимальный уровень тяги. При полете на крейсерской дозвуковой скорости третий воздушный контур будет открыт, что позволит несколько увеличить тягу двигателя и снизить потребление топлива.

Разработку технологий реактивного двигателя изменяемого цикла ВВС США заказали у компании General Electric в сентябре 2012 года. Тогда сообщалось, что рабочий прототип нового двигателя будет создан к 2017 году, а его установка на боевые самолеты начнется после 2020 года. По предварительной оценке, использование адаптивных двигателей позволит ВВС США экономить до 1,2 миллиарда галлонов топлива в год (4,5 миллиарда литров). Это чуть меньше половины ежегодного потребления топлива американскими ВВС.


Реактивный двигатель изменяемого цикла с адаптивной технологией (ADVENT)
Керамические матричные композиты

December 10th, 2012

Продолжая цикл статей (лишь потому что мне нужен еще один реферат, теперь по предмету "двигатели") - статья о весьма перспективном и многообещающем проекте двигателя SABRE. В общем то о нем и в рунете немало написано, но по большей части весьма сумбурные заметки и дифирамбы на сайтах новостных агентств, а вот статья на английской википедии мне весьма глянулась, они вообще, приятно богаты деталями и подробностями - статьи на английской википедии.

Так что в основу сего поста (и моего будущего реферата) легла именно статься, в оригинале лежащая по адресу: http://en.wikipedia.org/wiki/SABRE_(rocket_engine) , так же было немного добавлено отсебятины и пояснений, и собран по просторам инета иллюстративный материал (вот чем чем, а богатством картинок статьи на википедии не отличаются)

Ниже следует


SABRE (Synergistic Air-Breathing Rocket Engine) – Синергичный воздушно-реактивный ракетный двигатель – концепт, разрабатываемый компанией Reaction Engines Limited, гиперзвуковой гибридный воздушно реактивный/ракетный двигатель с предварительным охлаждением. Двигатель разрабатывается для обеспечения возможности одноступенчатого выхода на орбиту для аэрокосмической системы Skylon. SABRE представляет собой эволюционное развитие серии LACE и LACE-подобных двигателей, разрабатывавшихся Аланом Бондом в начале/середине 1980 в рамках проекта HOTOL.

Конструктивно это один двигатель с комбинированным рабочим циклом, имеющий два режима работы. В воздушно-реактивном режиме сочетается турбокомпрессор с легким теплообменником-охладителем, расположенным непосредственно за конусом воздухозаборника. На высокой скорости теплообменник охлаждает горячий, сжатый воздухозаборником воздух, что в позволяет обеспечить необычайно высокую степень сжатия в двигателе. Сжатый воздух далее подается в камеру сгорания, как у обычного ракетного двигателя, где он обеспечивает воспламенение жидкого водорода. Низкая температура воздуха позволяет использовать легкие сплавы и снизить общий вес двигателя – что весьма критично для выхода на орбиту. Добавим, что в отличии от LACE концептов, предшествувавших этому двигателю, SABRE не сжижает воздух, что дает большую эффективность.


Рис.1. Аэрокосмический ЛА Skylon и двигатель SABRE

После закрытия конуса воздухозаборника на скорости М = 5,14 и высоте 28,5 км, система продолжает работать в закрытом цикле высокопроизводительного ракетного двигателя, потребляющего жидкий кислород и жидкий водород с находящихся на борту баков, позволяя Skylon достичь орбитальной скорости после выхода из атмосферы в крутом наборе высоты.

Так же, на основе двигателя SABRE, был разработан воздушно-реактивный, называемый Scimitar, для перспективного гиперзвукового пассажирского авиалайнера А2, разрабатываемого в рамках программы LAPCAT, финансированной Европейским Союзом.

В ноябре 2012 компания Reaction Engines объявила о успешном завершении серии испытаний, которые подтверждают работоспособность системы охлаждения двигателя – одного из главных препятствий на пути к завершению проекта. Европейское космическое агенство (ESA) так же оценило теплообменник-охладитель двигателя SABRE, и подтвердило наличие технологий, необходимых для воплощения двигателя в металле.



Рис.2. Модель двигателя SABRE

История

Идея двигателя с предварительным охлаждением впервые возникла у Роберта Кармайкла в 1955 году. За этим следовала идея двигателя с сжижением воздуха (LACE), первоначально изучалась Marquardt и General Dynamics в 1960х годах, как часть работ US Air Force по проекту Aerospaceplane.
LACE система располагается непосредственно за сверхзвуковым воздухозаборником – таким образом сжатый воздух попадает сразу в теплообменник где моментально охлаждается с использование некоторого количества жидкого водорода, хранящегося на борту в качестве топлива. Полученный жидкий воздух затем обрабатывается, для извлечения жидкого кислорода, который поступает в двигатель. Однако количество прошедшего через теплообменник и нагретого водорода, значительно больше, чем может быть сожжено в двигателе, и его избыток просто сливается за борт (тем не менее он тоже дает некоторый прирост тяги).

В 1989 года, когда финансирование проекта HOTOL было прекращено, Бонд и другие специалисты образуют компанию Reaction Engines Limited для продолжения исследования. Теплообменник двигателя RB545 (который предполагалось использовать в проекте HOTOL) имел некоторые проблемы с хрупкостью конструкции, а так же относительно высоким расходом жидкого водорода. Так же его использование было невозможно – патент на двигатель принадлежал компании Rolls Royce, и самый существенный аргумент – двигатель был объявлен совершенно секретным. По этому Бонд пошел на разработку нового двигателя SABRE, развивая идеи, заложенные в предыдущий проект.

По состоянию на ноябрь 2012 года, было завершено тестирование оборудования в рамках темы «Технология теплообменника, критичная для гибридного ракетного двигателя, питаемого воздухом и жидким кислородом». Это был важный этап в процессе разработки SABRE, который продемонстрировал потенциальным инвесторам жизнеспособность технологии. Двигатель основан на теплообменнике, способном охладить поступающий воздух до -150°C (-238°F). Охлажденный воздух смешивается с жидким водородом и сгорая, обеспечивает тягу для атмосферного полета, перед переключением на жидкий кислород из баков, при полете вне атмосферы. Успешные испытания этой, столь критической технологи, подтвердили что теплообменник может обеспечить потребности двигателя в получении достаточного количества кислорода из атмосферы для работы с высокой эффективностью в условиях низко-высотного полета.

На авиашоу Фарнборо 2012 Дэвид Уиллетс, являющийся министром по делам университетов и науки Объединенного королевства, выступил по этому поводу с речью. В частности, он сказал, что данный двигатель, разработчиком которого является компания Reaction Engines, реально может повлиять на условия игры, действующие в космической отрасли. Успешно завершившиеся испытания системы предварительного охлаждения являются подтверждением высокой оценки концепции двигателя, которую сделало Космическое агентство Великобритании в 2010 году. Министр также добавил, что если однажды им удастся использовать данную технологию для осуществления собственных полетов коммерческого назначения, то это, несомненно, будет фантастическим по своему масштабу достижением.

Министр также отметил, что существует маленькая вероятность того, что Европейское космическое агентство согласится финансировать Skylon, поэтому Великобритания должна быть готова заниматься строительством космолета по большей части на свои средства.



Рис.3. Аэрокосмический ЛА Skylon - компоновка

Следующий этап программы SABRE предусматривает наземные испытания масштабной модели двигателя, способной продемонстрировать полный цикл. ESA выразило уверенность в успешной постройке демонстратора и заявило о том, что он будет представлять собой «важную веху в развитии этой программы и прорыв в вопросе двигательных установок по всему миру»

Конструкция



Рис.4. Компоновка двигателя SABRE

Подобно RB545, конструкция SABRE скорее ближе к традиционному ракетному двигателю, чем к воздушно реактивному. Гибридный Воздушно-реактивный/Ракетный двигатель с предварительным охлаждением использует жидкое водородное топливо в сочетании с окислителем, поставляемым либо в виде газообразного воздуха с помощью компрессора, либо в виде жидкого кислорода, поставляемого из топливных баков с помощью турбонасоса.

В передней части двигателя расположен простой осесимметричный воздухозаборник в виде конуса, который тормозит воздух до дозвуковых скоростей, используя всего два отраженных скачка уплотнения.

Часть воздуха через теплообменник в центральную часть двигателя, а оставшийся проходит через кольцевой канал в второй контур, представляющий собой обычный ПВРД. Центральная часть, расположенная за теплообменником, представляет собой турбокомпрессор, приводящийся в движение газообразным гелием, циркулирующим по замкнутому каналу цикла Брайтона. Сжатый компрессором воздух поступает под высоким давлением в четыре камеры сгорания ракетного двигателя комбинированного цикла.



Рис.5. Упрощенный цикл работы двигателя SABRE

Теплообменник

Поступающий в двигатель на сверх/гиперзвуковых скоростях воздух становится очень горячим после торможения и сжатия в воздухозаборнике. С высокими температурами в реактивных двигателях традиционно справлялись используя тяжелые сплавы на основе меди или никеля, за счет снижения степени сжатия компрессора, а так же снижением оборотов, во избежание перегрева и плавления конструкции. Однако для одноступенчатого КА такие тяжелые материалы неприменимы, и необходима максимально возможная тяга, для выхода на орбиту в кратчайшее время, чтобы минимизировать тяжесть потерь.

При использовании газообразного гелия в качестве теплоносителя, воздух в теплообменнике существенно охлаждается от 1000°C до -150°C, при этом избегая сжижения воздуха или конденсации водяного пара на стенках теплообменника.



Рис.6. Модель одно из модулей теплообменника

Предыдущие версии теплообменника, например применяемые в проекте HOTOL пропускали водородное топливо непосредственно через теплообменник, но использование гелия как промежуточного контура между воздухом и холодным топливом сняло проблему водородной хрупкости конструкции теплообменника. Однако резкое охлаждение воздуха сулит определенные проблемы – необходимо предотвратить блокировку теплообменника замороженным водяным паром и иными фракциями. В ноябре 2012 года был продемонстрирован образец теплообменника, способный охладить атмосферный воздух до -150°C за 0,01 с.
Одной из инноваций теплообменника SABRE служит спиральное размещение трубок с халагентом, что значительно обещает поднять его эффективность.



Рис.7. Опытный образец теплообменника SABRE

Компрессор

На скорости М=5 и высоте 25 километров, что составляет 20% орбитальной скорости и высоты, необходимой для выхода на орбиту, охлажденный в теплообменнике воздух попадает в весьма обыкновенный турбокомпрессор, конструктивно подобный используемым в обычных турбореактивных двигателях, но обеспечивающий необычайно высокую степень сжатия, благодаря крайне низкой температуре входящего воздуха. Это позволяет сжать воздух до 140 атмосфер перед подачей в камеры сгорания основного двигателя. В отличии от турбореактивных двигателей, турбокомпрессор приводится в действие турбиной, расположенной в гелиевом контуре, а не от действия продуктов сгорания, как в обычных турбореактивных двигателей. Таким образом турбокомпрессор работает на тепле, полученным гелем в теплообменнике.

Гелиевый цикл

Тепло переходит от воздуха к гелию. Горячий гелий из теплообменника «гелий-воздух» охлаждается в теплообменнике «гелий-водород», отдавая тепло жидкому водородному топливу. Контур, в котором циркулирует гелий, работает согласно циклу Брайтона, как охлаждая двигатель в критических местах, так и для привода энергетических турбин и многочисленных агрегатов двигателя. Остаток тепловой энергии используется для испарения части водорода, который сжигается в внешнем, прямоточном контуре.

Глушитель

Для охлаждения гелия, его прокачивают через бак с азотом. В настоящее время для тестов используется не жидкий азот а вода, которая испаряется, понижая температуру гелия и глушит шум от выхлопных газов.

Двигатель

Благодаря тому, что гибридный ракетный двигатель обладает далеко не нулевой статической тягой, летательный аппарат может взлететь в обычном, воздушно-реактивном режиме, без посторонней помощи, подобно оснащенным обычными турбореактивными двигателями. При наборе высоты и падении атмосферного давления, все больше и больше воздуха направляется в компрессор, а эффективность сжатия в воздухозаборнике только снижается. В этом режиме реактивный двигатель может работать на намного большей высоте, чем это было возможно в обычном случае.
При достижении скорости М=5.5 воздушнореактивный двигатель становится не эффективным и отключается, и теперь в ракетный двигатель поступает хранящийся на борту жидкий кислород и жидкий водород, так вплоть до достижения орбитальной скорости (соизмеримо с М=25). Турбонасосные агрегаты приводятся тем же гелиевым контуром, который теперь получает тепло в специальных «предварительных камерах сгорания».
Необычное конструкционное решение системы охлаждения камер сгорания - в качестве охлаждающего вещества используется окислитель (воздух/жидкий кислород) вместо жидкого водорода, во избежание перерасхода водорода и нарушения стехиометрического соотношения (соотношение топлива к окислителю).

Второй существенный момент – реактивное сопло. Эффективность работы реактивного сопла зависит от его геометрии и атмосферного давления. В то время как геометрия сопла остается неизменной, давление существенно изменяется с высотой, следовательно сопла, высокоэффективные в нижних слоях атмосферы, существенно теряют свою эффективность с достижением больших высот.
В традиционных, многоступенчатых системах, это преодолевается простым использованием разной геометрии, для каждой ступени и соответствующего этапа полета. Но в одноступенчатой системе мы все время используем одно и то же сопло.



Рис.8. Сравнение работы различных реактивных сопел в атмосфере и вакууме

Как выход планируется использование специального Expansion-Deflection (ED nozzle) – регулируемого реактивного сопла разрабатываемого в рамках проекта STERN , которое состоит из традиционного колокола (правда сравнительно короче обычного), и регулируемого центрального тела, которое отклоняет поток газа к стенкам. Изменяя положение центрального тела, можно добиться того что выхлоп не займет всю площадь донного среза, а лишь кольцеобразный участок, регулируя занимаемую им площадь соответственно атмосферному давлению.

Так же, в многокамерном двигателе, можно регулировать вектор тяги, изменяя площадь сечения, а следовательно и вклад в общую тягу, каждой камеры.



Рис.9. Реактивное сопло Expansion-Deflection (ED nozzle)

Прямоточный контур

Отказ от сжижения воздуха поднял эффективность работы двигателя, снизив затраты теплоносителя путем снижения энтропии. Однако даже простое охлаждение воздуха требует больше водорода, чем может быть сожжено в первом контуре двигателя.

Избыток водорода сливается за борт, но не просто так, а сжигается в ряде камер сгорания, которые расположены в внешнем кольцевом воздушном канале, образующем прямоточную часть двигателя, в которую поступает воздух, пошедший в обход теплообменника. Второй, прямоточный контур снижает потери вследствие сопротивления воздуха, не попавшего в теплообменник, и так же дает некоторую часть тяги.
На низких скоростях в обход теплообменника/компрессора идет очень большое количество воздуха, а с ростом скорости, для сохранения эффективности большая часть воздуха наоборот, попадает в компрессор.
Это отличает систему от турбопрямоточного двигателя, где все обстоит с точностью до наоборот – на малых скоростях большие массы воздуха идут через компрессор, а на больших – в его обход, через прямоточный контур, который становится настолько эффективным, что берет на себя ведущую роль.

Производительность

Расчетная тяговооруженность SABRE предполагается свыше 14 единиц, при этом тяговооруженность обычных реактивных двигателей лежит в пределах 5, и всего лишь 2 для сверхзвуковых прямоточных двигателей. Столь высокая производительность получена благодаря использованию сверхохлажденного воздуха, который становится весьма плотным и требует меньшего сжатия, и, что более существенно, благодаря низким рабочим температурам стало возможным использовать легкие сплавы для большей части конструкции двигателя. Общая производительность обещает быть выше, чем в случае RB545 или сверхзвуковых прямоточных двигателей.

Двигатель имеет высокий удельный импульс в атмосфере, который достигает 3500 сек. Для сравнения обычный ракетный двигатель имеет удельный импульс в лучшем случае около 450, и даже перспективный «тепловой» ядерный ракетный двигатель обещает достичь лишь величины 900 сек.

Комбинация высокой топливной эффективности и низкой массы двигателя дает Skylon возможность достичь орбиты в одноступенчатом режиме, при этом работая как воздушно-реактивный до скорости М=5,14 и высоты 28,5 км. При этом аэрокосмический аппарат достигнет орбиты с большой полезной нагрузкой относительно взлетного веса, какая не могла быть ранее достигнутой ни одним, неядерным транспортным средством.

Подобно RB545, идея предварительного охлаждения увеличивает массу и сложность системы, что в обычных условиях служит антитезисом принципу конструирования ракетных систем. Также теплообменник очень агрессивная и сложная часть конструкции двигателя SABRE. Правда следует отметить что масса этого теплообменника предполагается на порядок ниже существующих образцов, и эксперименты показали что это может быть достигнуто. Экспериментальный теплообменник добился теплообмена почти в 1 ГВт/м2, что считается мировым рекордом. Небольшие модули будущего теплообменника уже изготовлены.

Потери от дополнительного веса системы компенсируются в закрытом цикле (теплообменник-турбокомпрессор) также как дополнительный вес крыльев Skylon увеличивая общий вес системы, так же способствуют общему увеличению эффективности больше, чем снижению ее. Это большей частью компенсируется разными траекториями полета. Обычные ракеты-носители стартуют вертикально, с крайне низкими скоростями (если говорить о тангенциальной а не нормальной скорости), этот, на первый взгляд неэффективных ход, позволяет быстрей пронзить атмосферу и набирать тангенциальную скорость уже в безвоздушной среде, не теряя скорость на трении о воздух.

В то же время большая топливная эффективность двигателя SABRE позволяют очень пологий подъем (при котором растет больше тангенциальная, чем нормальная составляющая скорости), воздух скорее способствует чем тормозит систему (окислитель и рабочее тело для двигателя, подъемная сила для крыльев), дает в итоге намного меньший расход топлива для достижения орбитальной скорости.

Некоторые характеристики

Тяга в пустоте – 2940 кН
Тяга на уровне моря – 1960 кН
Тяговоруженность (двигателя) – около 14 (в атмосфере)
Удельный импульс в вакууме – 460 сек
Удельный импульс на уровне моря – 3600 сек

Преимущества

В отличии от традиционных ракетных двигателей, и подобно иным типам воздушно-реактивных двигателей, гибридный реактивный двигатель может использовать воздух, для сжигания топлива, снижая необходимый вес ракетного топлива, и тем увеличивая вес полезной нагрузки.

ПВРД и ГПВРД должны провести большое количество времени в нижних слоях атмосферы, чтобы достичь скорости, достаточной для выхода на орбиту, что выводит на передний план проблему интенсивного нагрева на гиперзвуке, а так же потери в следствии значительно веса и сложности теплозащиты.

Гибридный реактивный двигатель подобный SABRE нуждается только в достижении низкой гиперзвуковой скорости (напомним: гиперзвук – все что после М=5, следовательно М = 5,14 это самое начало гиперзвукового диапазона скоростей) в нижних слоях атмосферы, перед переходом на закрытый цикл работы и крутом подъеме с набором скорости в ракетном режиме.

В отличии от ПВРД или ГПВРД, SABRE способен обеспечить высокую тягу от нулевой скорости и до М=5,14, от земли и до больших высот, с высокой эффективностью во всем диапазоне. Кроме того, возможность создания тяги при нулевой скорости означает возможность испытаний двигателя на земле, что значительно сокращает стоимость разработки.

Так же вашему вниманию предлагается некоторое число ссылок

В настоящее время американские Blue Origin и Aerojet Rocketdyne создают замену российскому двигателю РД-180. Компании конкурируют между собой, каждая планирует сертифицировать свой агрегат не позднее 2019 года. Молодая Blue Origin рабочий образец BE-4 (Blue Engine-4) в марте, однако стендовые испытания, проведенные в мае, неудачей. Создавшая двигатели для американской лунной ракеты и проверенная временем Aerojet Rocketdyne, казалось бы, отстает: лишь в мае она первые огневые испытания предкамеры агрегата AR1, рабочего образца которого до сих пор нет. Стоит ли ожидать скорого отказа США от РД-180 - выясняла .

Сегодня один двухкамерный жидкостный ракетный двигатель РД-180 устанавливается на первую ступень американской тяжелой ракеты Atlas V. Горючее - керосин, окислитель - кислород. Двигатель разрабатывался в 1994-1999 годах на основе четырехкамерных РД-170, устанавливаемых на боковые ускорители советской сверхтяжелой ракеты «Энергия» (по сути они представляют собой первые ступени российско-украинского носителя ). Контракт на создание двигателя для США между (сегодня ее подразделение Rocketdyne входит в состав Aerojet Rocketdyne) и был заключен в июне 1996 года. Между заключением соглашения и запуском первой ракеты прошло четыре года.

Огневые испытания РД-180 начались в «Энергомаше» в ноябре 1996 года. В США первый серийный двигатель был отправлен в январе 1999 года, где через три месяца был сертифицирован для средней ракеты Atlas III. Первый раз американский носитель с российским двигателем полетел в мае 2001 года, всего было совершено шесть пусков Atlas III, и все они были успешными. Для Atlas V агрегат РД-180 сертифицирован в августе 2001 года, первый пуск нового носителя произошел через год. По состоянию на 18 апреля 2017 года ракета Atlas V была запущена 71 раз, из которых один раз - частично удачно (российский двигатель тут ни при чем: произошла утечка жидкого водорода из бака разгонного блока Centaur, в результате чего полезная нагрузка была выведена на нерасчетную орбиту).

Сегодня Atlas V фактически является основной американской тяжелой ракетой. Пуски другого тяжелого американского носителя - Delta IV (на нем нет российских двигателей) - слишком дороги, так что , из-за конкуренции со среднетяжелой ракетой Falcon 9 , решил свести их к минимуму. С 2007 года Boeing и Lockheed Martin, производитель Atlas V, управляют пусками своих носителей через совместное предприятие ULA (United Launch Alliance). В США у этой компании большие проблемы. Во-первых, даже более дешевая по сравнению с Delta IV ракета Atlas V сегодня не выдерживает конкуренции с Falcon 9 в коммерческих, государственных и военных пусках; во-вторых, в связи с ухудшением российско-американских отношений в 2014 году ULA должна к 2019 году отказаться от покупки РД-180.

У компании есть несколько способов сохранить бизнес. Первый - отказаться от ракеты и построить новую, уже без российских двигателей. Второй - попробовать установить в Atlas V новый двигатель вместо РД-180. Blue Origin реализует первый подход, Aerojet Rocketdyne - второй. Вариант, согласно которому на территории США можно было бы развернуть производство РД-180, не выдерживает никакой критики: это настолько дорого и долго, что проще создать новый агрегат. К тому же лицензионное соглашение на передачу в США технологии производства российских двигателей РД-180 заканчивается в 2030 году - не имеет смысла разворачивать дорогостоящее производство всего на десять лет.

«Американцы думали, что они начнут с нами работать, а года через четыре возьмут наши технологии и будут сами их воспроизводить. Я им сразу сказал: вы затратите больше миллиарда долларов и десять лет. Четыре года прошло, и они говорят: да, надо лет шесть. Прошли еще годы, они говорят: надо еще восемь лет. Прошло уже семнадцать лет, и они ни один двигатель не воспроизвели. Им сейчас только на стендовое оборудование для этого нужны миллиарды долларов», - говорил еще в 2012 году по этому поводу создатель двигателя РД-180 академик Борис Каторгин.

Компании Blue Origin и Aerojet Rocketdyne слишком разные, что не может не отражаться в подходах к ракетному двигателестроению. За плечами Aerojet Rocketdyne, претерпевшей множество реорганизаций, создание в 1950-х и 1960-х агрегатов F-1, устанавливаемых на первую ступень сверхтяжелой ракеты ракеты Saturn V лунной миссии Apollo. Ее AR1, как и РД-180, является жидкостным ракетным двигателем закрытого цикла, в качестве топлива используется керосин, окислитель -
кислород. Это позволяет заменить российский агрегат на американский без принципиальной доработки носителя Atlas V.

В мае 2017 года Aerojet Rocketdyne провела первые огневые испытания предкамеры (в ней топливо частично сгорает и затем поступает в камеру сгорания) двигателя AR1. «Прохождение этого важного этапа позволяет заключить, что AR1 будет готов к полету в 2019 году, - сказала генеральный директор и президент Aerojet Rocketdyne Эйлин Дрейк. - В деле замены двигателей российского производства на текущих ракетах-носителях успех миссии должен быть национальным приоритетом номер один».

Дрейк отметила конкурентные особенности AR1. Во-первых, при создании отдельных элементов американского двигателя используется трехмерная печать. Во-вторых, применяется специальный сплав на основе никеля, позволяющий отказаться «от экзотических металлических покрытий, в настоящее время используемых в производстве РД-180». Для разработки AR1 компания использует методологию, ранее применявшуюся при создании других своих агрегатов (RS-68, J-2X, RL10 и RS-25). В компании планируют создать рабочий прототип (и почти сразу же сертифицировать) AR1 уже в 2019 году.

Blue Origin в создании замены РД-180, по оценкам ULA, опережает Aerojet Rocketdyne на два года. Работу над BE-4 компания начала еще в 2011 году в рамках работы над собственной тяжелой ракетой New Glenn; первый рабочий образец двигателя представлен в марте 2017 года. В Blue Origin признают, что РД-180 «работает на максимуме производительности», тем не менее два однокамерных BE-4, устанавливаемых на первую ступень носителя Vulcan (фактически Atlas VI), в совокупности позволят развить большую тягу, чем два AR1 и один РД-180 на первой ступени Atlas V. В отличие от AR1 и РД-180, в качестве горючего в BE-4 используется метан. В Blue Origin называют BE-4 самым мощным двигателем в мире, работающем на метане.

Первые стендовые испытания BE-4 прошли неудачно. «Вчера мы потеряли набор тестового оборудования для топливной системы на одном из наших испытательных стендов BE-4», - сообщает Blue Origin, уточняя, что на процесс разработки двигателя инцидент не повлияет. Топливная система включает множество турбонасосов и клапанов, которые обеспечивают подачу топливо-окислительной смеси к инжекторам и камерам сгорания жидкостного ракетного двигателя.

В компании пообещали, что скоро вернутся к тестированию. Из сообщения, опубликованного Blue Origin, как отмечает Ars Technica, неясен масштаб аварии, однако «тот факт, что Blue Origin, относительно скрытная компания (по сравнению с той же SpaceX - прим. «Ленты.ру» ) вообще поделилась этой информацией, показателен». Скорее всего, на самом деле ничего страшного не произошло: в распоряжении Blue Origin имеются как минимум два испытательных стенда, а ранее компания заявляла, что планирует создать сразу три рабочих образца ВЕ-4.

Стоимость двигателя ВЕ-4 неизвестна. В Blue Origin ничего не говорят об этом, однако нельзя не отметить, что компания принадлежит американскому миллиардеру , владелец который считается пятым богатейшим человеком в мире (помимо членов королевских семей и глав отдельных государств): его состояние оценивается в 71,8 миллиарда долларов. Главный актив выпускника

У Blue Origin и ULA особые отношения. В 2015 году Aerojet Rocketdyne хотела купить ULA за два миллиарда долларов, в этом случае РД-180, скорее всего, заменяли бы на AR1. Ситуацию изменила Blue Origin, подписавшая соглашение с ULA о сотрудничестве по производству BE-4 и фактически перехватившая инициативу у проверенной временем Aerojet Rocketdyne. Сегодня BE-4 является наиболее вероятным кандидатом для установки на ракету Vulcan, а AR1 рассматривается в качестве запасного варианта. В любом случае, AR1 найдут применение, его можно установить, например, на первую ступень тяжелой ракеты, разрабатываемой компанией Orbital ATK.

Ожидается, что в 2020-х годах Vulcan сможет осуществлять до десяти пусков в год. Носитель должен собираться по модульному принципу и будет включать 12 ракет среднего и тяжелого классов с различными возможностями по выводу полезной нагрузки на орбиту. Двигатели первой ступени (BE-4 или AR1) могут быть повторно использованы после их приземления при помощи защитных щитов (для предотвращения перегрева от трения при падении в атмосфере) и парашютов. В качестве космодромов для Vulcan компания ULA собирается использовать площадки на мысе Канаверал во Флориде или базу ВВС США Ванденберг в Калифорнии. Первый пуск ракеты Vulcan, которая придет на смену Atlas V с российским РД-180, запланирован на конец 2019 года.

Самый большой в мире реактивный двигатель April 26th, 2016

Тут и так то летаешь с неким опасением, и все время оглядываешься в прошлое, когда самолеты были маленькие и могли запросто планировать при любой неполадке, а тут все больше и больше. В продолжении процесса пополнения копилочки почитаем и посмотрим на такой авиационный двигатель.

Американская компания General Electric в данный момент проводит тестирование самого большого в мире реактивного двигателя. Новинка разрабатывается специально для новых Boeing 777X.

Вот подробности...

Фото 2.

Реактивный двигатель-рекордсмен получил имя GE9X. С учетом того, что первые Боинги с этим чудом техники поднимутся в небо не ранее 2020 года, компания General Electric может быть уверена в их будущем. Ведь на данный момент общее число заказов на GE9X превышает 700 единиц. А теперь включите калькулятор. Один такой двигатель стоит $29 миллионов. Что касается первых тестов, то они проходят в окрестностях городка Пиблс, штат Огайо, США. Диаметр лопасти GE9X составляет 3,5 метра, а входное отверстие в габаритах равно 5,5 м х 3,7 м. Один двигатель сможет выдавать реактивной тяги на 45,36 тонны.

Фото 3.

По словам GE, ни один из коммерческих двигателей в мире не имеет такую высокую степень сжатия (степень сжатия 27:1), как GE9X. В конструкции двигателя активно используются композиционные материалы.

Фото 4.

GE9X компания GE собирается устанавливать на широкофюзеляжный дальнемагистральный самолет Boeing 777X. Компания уже получила заказы от авиакомпаний Emirates, Lufthansa, Etihad Airways, Qatar Airways, Cathay Pacific и других.

Фото 5.

Сейчас проходят первые испытания полного двигателя GE9X. Испытания начались еще в 2011 году, когда велась проверка компонентов. По словам GE, эта относительно ранняя проверка была проведена с целью получения испытательных данных и запуска процесса сертификации, так как компания планирует установить такие двигатели для летных испытаний уже в 2018 году.

Фото 6.

Камера сгорания и турбина выдерживают температуры до 1315 °C, что дает возможность более эффективно использовать топливо и снизить его выбросы.

В дополнение GE9X оснащен топливными форсунками, напечатанными на 3D-принтере. Эту сложную систему аэродинамических труб и углублений компания хранит в тайне.

Фото 7.

На GE9X установлены турбина компрессора низкого давления и редуктор привода агрегатов. Последний приводит в действие насос для подачи горючего, маслонасос, гидравлический насос для системы управления ЛА. В отличие от предыдущего двигателя GE90, у которого было 11 осей и 8 вспомогательных агрегатов, новый GE9X оснащен 10 осями и 9 агрегатами.

Уменьшение количества осей не только снижает вес, но и уменьшает количество деталей и упрощает логистическую цепочку. Второй двигатель GE9X планируется подготовить для проведения испытаний в следующем году

Фото 8.

В конструкции двигателя GE9X использовано множество деталей и узлов, изготовленных из легковесных и термоустойчивых композитных керамических материалов (ceramic matrix composites, CMC). Эти материалы способны выдерживать огромную температуру и это позволило значительно поднять температуру в камере сгорания двигателя. "Чем большую температуру можно получить в недрах двигателя, тем большую эффективность он демонстрирует" - рассказывает Рик Кеннеди (Rick Kennedy), представитель компании GE Aviation, - "При более высокой температуре происходит более полное сгорание топлива, оно меньше расходуется и уменьшаются выбросы вредных веществ в окружающую среду".

Большое значение при изготовлении некоторых узлов двигателя GE9X сыграли современные технологии трехмерной печати. При их помощи были созданы некоторые детали, включая инжекторы топлива, столь сложной формы, которую невозможно получить путем традиционной механической обработки. "Сложнейшая конфигурация топливных каналов - это тщательно охраняемая нами коммерческая тайна" - рассказывает Рик Кеннеди, - "Благодаря этим каналам топливо распределяется и распыляется в камере сгорания наиболее равномерным способом".

Фото 9.

Следует отметить, что недавние испытания являются первым разом, когда двигатель GE9X был запущен в его полностью собранном виде. А разработка этого двигателя, сопровождавшаяся стендовыми испытаниями отдельных узлов, производилась в течение нескольких последних лет.

И в заключении следует отметить, что несмотря на то, что двигатель GE9X носит титул самого большого в мире реактивного двигателя, он не является рекордсменом по силе создаваемой им реактивной тяги. Абсолютным рекордсменом по этому показателю является двигатель предыдущего поколения GE90-115B, способный развивать тягу в 57.833 тонны (127 500 фунтов).

Фото 10.

Фото 11.

Фото 12.

Фото 13.

источники

Реактивные самолеты - самые мощные и современные воздушные суда XX века. Их принципиальное отличие от других состоит в том, что они приводятся в движение с помощью воздушно-реактивного или реактивного двигателя. В настоящее время они составляют основу современной авиации, как гражданской, так и военной.

История реактивных самолетов

Реактивные самолеты впервые в истории авиации попытался создать румынский конструктор Анри Коанда. Это было в самом начале XX века, в 1910 году. Он с помощниками испытал самолет, названный в его честь Coanda-1910, который был оснащен поршневым двигателем вместо всем знакомого винта. Именно он приводил в движение элементарный лопастной компрессор.

Однако многие сомневаются, что именно это был первый реактивный самолет. После окончания Второй мировой войны Коанда говорил, что созданный им образец был мотокомпрессорным воздушно-реактивным двигателем, противореча сам себе. В своих первоначальных публикациях и патентных заявках он ничего подобного не утверждал.

На фотоснимках румынского самолета видно, что двигатель располагается возле деревянного фюзеляжа, поэтому при сжигании топлива пилот и самолет были бы уничтожены образовавшемся пожаром.

Сам Коанда утверждал, что огонь действительно уничтожил хвост самолета во время первого полета, однако документальных подтверждений не сохранилось.

Стоит отметить, что в реактивных самолетах, выпускавшихся в 1940 годах, обшивка была цельнометаллической и имела дополнительную тепловую защиту.

Эксперименты с реактивными самолетами

Официально первый реактивный самолет поднялся в воздух 20 июня 1939 года. Именно тогда состоялся первый экспериментальный полет авиасудна, созданного немецкими конструкторами. Чуть позже свои образцы выпустила Япония и страны антигитлеровской коалиции.

Немецкая компания Heinkel начала опыты с реактивными самолетами в 1937 году. Уже через два года модель He-176 совершила свой первый официальный полет. Однако после первых пяти пробных вылетов стало очевидным, что запустить этот образец в серию нет никаких шансов.

Проблемы первых реактивных самолетов

Ошибок немецких конструкторов было несколько. Во-первых, двигатель был выбран жидкостно-реактивный. В нем использовались метанол и перекись водорода. Они выполняли функции горючего и окислителя.

Разработчики предполагали, что эти реактивные самолеты смогут развивать скорость до одной тысячи километров в час. Однако на практике удалось добиться скорости только в 750 километров в час.

Во-вторых, у самолета был непомерный расход топлива. С собой его приходилось брать столько, что авиасудно могло удалиться максимум на 60 километров от аэродрома. После ему требовалась дозаправка. Единственным плюсом, в сравнении с другими ранними моделями, стала быстрая скорость набора высоты. Она составляла 60 метров в секунду. При этом в судьбе этой модели определенную роль сыграли субъективные факторы. Так, она просто-напросто не понравилась Адольфу Гитлеру, который присутствовал на одном из пробных пусков.

Первый серийный образец

Несмотря на неудачу с первым образцом, именно немецким авиаконструкторам удалось раньше всех запустить реактивные самолеты в серийное производство.

На поток был поставлен выпуск модели Me-262. Первый пробный полет этот самолет совершил в 1942 году, в самый разгар Второй мировой войны, когда Германия уже вторглась на территорию Советского Союза. Эта новинка могла существенно повлиять на окончательный исход войны. На вооружение немецкой армии это боевое воздушное судно поступило уже в 1944-м.

Причем выпускался самолет в различных модификациях - и как разведчик, и как штурмовик, и как бомбардировщик, и как истребитель. Всего до конца войны было произведено полторы тысячи таких самолетов.

Эти реактивные военные самолеты отличались завидными техническими характеристиками, по меркам того времени. На них были установлены два турбореактивных двигателя, в наличии имелся 8-ступенчатый осевой компрессор. В отличие от предыдущей модели эта, широко известная как "Мессершмитт", потребляла не так много топлива, имела хорошие летно-технические показатели.

Скорость реактивного самолета достигала 870 километров в час, дальность полета составляла более тысячи километров, максимальная высота - свыше 12 тысяч метров, скорость набора высоты - 50 метров в секунду. Масса пустого воздушного судна была менее 4 тонн, полностью снаряженного достигала 6 тысяч килограммов.

На вооружении "Мессершмиттов" стояли 30-миллиметровые пушки (их было не менее четырех), общая масса ракет и бомб, которые мог перевозить самолет, около полутора тысяч килограммов.

В ходе Второй мировой войны "Мессершмитты" уничтожили 150 самолетов. Потери немецкой авиации составили около 100 воздушных судов. Эксперты отмечают, что количество потерь могло бы быть намного меньше, если бы пилоты были лучше подготовлены к работе на принципиально новом летательном аппарате. К тому же имелись проблемы с двигателем, который быстро изнашивался и был ненадежен.

Японский образец

В годы Второй мировой войны выпустить свой первый самолет с реактивным двигателем стремились практически все противоборствующие страны. Японские авиаинженеры отличились тем, что первыми стали использовать жидкостно-реактивный двигатель в серийном производстве. Он применялся в японском пилотируемом самолете-снаряде, на котором летали камикадзе. С конца 1944 года до конца Второй мировой войны на вооружение японской армии поступило более 800 таких воздушных судов.

Технические характеристики японского реактивного самолета

Так как этот самолет, по сути, был одноразовым - камикадзе сразу на нем разбивались, то и строили его по принципу "дешево и сердито". Носовую часть составлял деревянный планер, при взлете воздушное судно развивало скорость до 650 километров в час. Все за счет трех жидкостно-реактивных двигателей. Ни взлетных двигателей, ни шасси самолету не требовалось. Он обходился без них.

Японский самолет для камикадзе доставлялся до цели бомбардировщиком Ohka, после чего включались жидкостно-реактивные двигатели.

При этом сами японские инженеры и военные отмечали, что эффективность и производительность такой схемы была крайне низка. Сами бомбардировщики легко вычислялись с помощью локаторов, установленных на кораблях, входивших в состав американского военно-морского флота. Происходило это еще до того, как камикадзе успевали настроиться на цель. В конечном счете многие самолеты гибли еще на дальних подступах к конечной цели своего назначения. Причем сбивали как самолеты, в которых сидели камикадзе, так и бомбардировщики, которые их доставляли.

Ответ Великобритании

Со стороны Великобритании во Второй мировой войне принимал участие только один реактивный самолет - это Gloster Meteor. Свой первый боевой вылет он совершил в марте 1943 года.

На вооружение великобританских королевских военно-воздушных сил он поступил в середине 1944 года. Его серийное производство продолжалось до 1955-го. А на вооружении эти самолеты находились вплоть до 70-х годов. Всего с конвейера сошли около трех с половиной тысяч этих воздушных судов. Причем самых различных модификаций.

В период Второй мировой выпускались только две модификации истребителей, затем их количество увеличилось. Причем одна из модификаций была настолько секретной, что на территорию противника они не летали, чтобы в случае крушения не достаться авиационным инженерам врага.

В основном они занимались отражением авиационных атак немецких самолетов. Базировались они под Брюсселем в Бельгии. Однако с февраля 1945 года немецкая авиация забыла об атаках, сконцентрировавшись исключительно на оборонительном потенциале. Поэтому в последний год Второй мировой войны из 200 с лишним самолетов Global Meteor были потеряны только два. Причем это не стало следствием усилий немецких авиатором. Оба самолета столкнулись между собой при заходе на посадку. На аэродроме в то время была сильная облачность.

Технические характеристики британского самолета

Британский самолет Global Meteor обладал завидными техническими характеристиками. Скорость реактивного самолета достигала почти 850 тысяч километров в час. Размах крыла больше 13 метров, взлетная масса около 6 с половиной тысяч килограммов. Взлетал самолет на высоту почти 13 с половиной километров, дальность полета при этом составляла более двух тысяч километров.

На вооружении британского самолета находились четыре 30-миллиметровые пушки, которые обладали высокой эффективностью.

Американцы в числе последних

Среди всех основных участников Второй мировой одними из последних реактивный самолет выпустили военно-воздушные силы США. Американская модель Lockheed F-80 попала на аэродромы Великобритании только в апреле 1945 года. За месяц до капитуляции немецких войск. Поэтому поучаствовать в боевых действиях он практически не успел.

Американцы активно применяли этот самолет через несколько лет во время войны в Корее. Именно в этой стране произошел первый в истории бой между двумя реактивными самолетами. С одной стороны был американский F-80, а с другой советский МиГ-15, который на тот момент был более современным, уже околозвуковым. Советский пилот одержал победу.

Всего на вооружение американской армии поступило более полутора тысяч таких самолетов.

Первый советский реактивный самолет сошел с конвейера в 1941 году. Его выпустили в рекордные сроки. 20 дней ушло на проектирование и еще месяц на производство. Сопло реактивного самолета выполняло функцию защиты его частей от излишнего нагрева.

Первый советский образец представлял собой деревянный планер, к которому были прикреплены жидкостно-реактивные двигатели. Когда началась Великая Отечественная война, все наработки были переброшены на Урал. Там начались экспериментальные вылеты и испытания. По замыслу конструкторов, самолет должен был развивать скорость до 900 километров в час. Однако, как только первый его испытатель Григорий Бахчиванджи приблизился к отметке в 800 километров в час, воздушное судно рухнуло. Летчик-испытатель погиб.

Окончательно доработать советскую модель реактивного самолета удалось только в 1945 году. Зато массовый выпуск начали сразу двух моделей - Як-15 и МиГ-9.

В сравнении технических характеристик двух машин принимал участие сам Иосиф Сталин. В результате было принято решение использовать Як-15, как учебное воздушное судно, а МиГ-9 поступил в распоряжение ВВС. За три года было выпущено более 600 МиГов. Однако вскоре самолет был снят с производства.

Основных причин было две. Разрабатывали его откровенно наспех, постоянно вносили изменения. К тому же сами пилоты относились к нему с подозрением. Чтобы освоить машину, требовалось много усилий, а ошибок в пилотаже допускать было категорически нельзя.

В результате в 1948 году на смену пришел усовершенствованный МиГ-15. Советский реактивный самолет летит со скоростью более 860 километров в час.

Пассажирский самолет

Самый известный реактивный пассажирский самолет, наряду с английским Concorde, - советский ТУ-144. Обе этих модели входили в разряд сверхзвуковых.

Советские самолеты поступили в производство в 1968 году. Звук реактивного самолета с тех пор стал часто раздаваться над советскими аэродромами.