В мфти создают «локальный» вечный двигатель второго рода. Вечный вопрос вечного двигателя

Скорость, с которой человечество превращает в тепловую все остальные формы энергии, начинает уже угрожать самому факту существования цивилизации. «Тепловая смерть» в обозримом будущем из-за всё нарастающего потребления энергии с последующим ее рассеянием в виде тепла уже кажется неизбежной при сохранении нынешних темпов экономического развития. Но если человечество попытается затормозить их, то пойдет поперек законов эволюции и все равно погибнет.

Есть ли выход? Вполне возможно, что он пока не просматривается просто из-за неправильного понимания одного физического принципа. Преобразование энергопотребления в круговорот энергии в принципе позволило бы наращивать его интенсивность, не нарушая равновесия со средой. Это доказывает опыт органического мира, который, на протяжении тысячелетий сохраняя массу биосферы более или менее постоянной, многократно увеличил за время своей эволюции ежегодное потребление вещества и энергии. Ныне пропускаемые им ежегодно через себя массы вещества сравнимы с массой земной коры, а по некоторым оценкам — превышают ее.

Вечный двигатель второго рода невозможен?

Поскольку почти вся потребленная нами энергия рано или поздно рассеивается в виде тепла, из-за чего нам угрожает «тепловая смерть», постольку круговорот энергии должен будет принять форму круговорота тепла. Другими словами, нам предстоит научиться собирать рассеянное тепло, чтобы вновь и вновь использовать его энергию.

Идеальной тепловой машиной принято считать ту, которую теоретически разработал в 1824 году французский физик Сади Карно (Nicolas Léonard Sadi Carnot , 1796-1832). Ее идеальность заключается в том, что коэффициент полезного действия (КПД) любой другой машины, использующей те же холодильник и нагреватель, будет меньше, чем у машины, придуманной им. А то, что КПД его машины отличен от единицы, следует из самого факта наличия у нее холодильника: получив определенную энергию от нагревателя (например, в виде тепла от сжигания топлива), рабочее тело (в идеальной машине это, разумеется, идеальный газ), выполняя полезную работу, совершенно бесполезно отдает часть своей энергии в виде тепла холодильнику.

Сегодня для собирания рассеянного тепла используются энергетические установки классического типа (с холодильником) — гео- и гидротермальные энергоустановки и тепловые насосы с КПД меньшими, чем КПД Карно.

Разумеется, использование рассеянного тепла возможно только потому, что среда нагрета неравномерно, то есть с перепадами температуры, которые и используются собирающими тепло тепловыми машинами. Коль скоро величина этих перепадов невелика, КПД классических тепловых машин зарезается до чрезмерно малых значений. Поэтому круговорот тепла в энергетике может стать реальным лишь при ее базировании на энергетических установках без холодильника, КПД которых не был бы ограничен КПД Карно.

Такие энергетические установки называют вечными двигателями второго рода. Принято считать, что они запрещены вторым началом термодинамики . Однако угроза «тепловой смерти» заставляет нас максимально благожелательно рассмотреть аргументы в их защиту.

Положение не безнадежно. Не может быть так, чтобы на протяжении миллионов и миллиардов лет законы эволюции подстегивали органический мир, а затем и человечество к развитию в определенном направлении (в сторону интенсификации потребления вещества и энергии), а потом это развитие вдруг наткнулось бы на закон физики, который, делая невозможным круговорот тепла, обрекал бы человечество на гибель. Законы эволюции и физики, думается, входят в единый и непротиворечивый свод законов природы. Если это и на самом деле так, то запрет на вечные двигатели второго рода должен оказаться несостоятельным.

Ошибки классиков

Если же смешать кислород с водородом при одинаковой температуре, рост энтропии будет не связан с передачей тепла. При смешении холодного водорода с горячим кислородом энтропия будет расти и благодаря выравниванию температуры, и благодаря простому смешиванию (диффузии). Проблема в том, что при определенных условиях рост полной энтропии может сопровождаться уменьшением одного из слагаемых — например, тепловой.

В общем случае действует закон возрастания полной энтропии и не действует «закон» возрастания тепловой энтропии. Поскольку таким образом тепловая энтропия может убывать, постольку превращение тепла в другие формы энергии может происходить с уменьшением тепловой энтропии, лишь бы росла полная. Это означает, что превращение тепла в другие формы энергии может быть полным, то есть происходить без тепловой компенсации.

Обязательность холодильника для любой тепловой машины сегодня объясняют необходимостью обеспечения возрастания тепловой энтропии. Отмена «закона» ее возрастания делает запрет на вечные двигатели второго рода несостоятельным, что открывает дорогу к созданию энергетики, построенной на круговороте тепла.

О проектах вечных двигателей второго рода

Сегодня существуют многие десятки таких проектов. Однако все они огульно и априорно объявляются противоречащими второму началу термодинамики и, соответственно, недостойными критического анализа. В результате их авторы вынуждены «вариться» в собственной среде, что, естественно, лишает их возможности стать объектом рациональной критики и снижает научный уровень их текстов, часто — до недопустимо низкого. Здесь очень сложно отделять плевелы от ржи. Я расскажу только об одном таком проекте, идея которого представляется мне вполне достойной обсуждения.

Поместим навстречу ветру в атмосфере сужающуюся трубу, воздух в которой будет ускоряться по «геометрическим» причинам, подобно воздуху в расщелине между скалами или в узком проходе между домами. Такой поток в приближении идеального газа описывается уравнением Бернулли, известным в двух основных формах. Согласно первой, ускорение газа вдоль линии тока сопровождается уменьшением его давления, согласно второй — падением температуры. Первый эффект обеспечивает подъемную силу крыла, второй, надо полагать, может быть положен в основание вечного двигателя второго рода.

В самом деле, охлаждение потока газа означает уменьшение количества содержащегося в нем тепла, ускорение — рост его кинетической энергии. Тепловая энергия напрямую превращается здесь в кинетическую, холодильник отсутствует. Охлаждение потока газа происходит с уменьшением его тепловой энтропии, которое компенсируется ростом нетепловой энтропии, связанным с уменьшением давления.

Сужающуюся трубу можно снабдить турбиной, превратив ее в энергетическую установку. На «ветроэнергетическую установку» такого рода получили патент российские изобретатели Михаил Андреевич Егоров, Игорь Сергеевич Орлов и Эммануил Авраамович Соболь. Их установка выглядит на чертежах как пузатая бомба, подвешенная вдоль воздушного потока и принимающая его внутрь себя кольцеобразным отверстием.

Читатель, располагающий необходимой экспериментальной базой (каковая отсутствует у автора), может сам поставить experimentum crucis, использовав, например, для сооружения сужающейся трубы пленку для теплиц, закрепленную на проволочном каркасе.

Установка Егорова-Орлова-Соболя, мне кажется, может быть приспособлена и к водной среде, где она может иметь бóльшую мощность, поскольку в единице объема земных водоемов содержится существенно больше тепла, чем в единице объема атмосферы.

Но дело совсем не в том, работает ли эта конкретная конструкция. В мои задачи не входит предъявление проектов вечных двигателей второго рода, которые можно было бы немедленно запускать в производство. Я лишь пытаюсь переломить устойчивое негативное отношение Большой Науки к самой идее таких двигателей.

Новости партнёров

Как известно, тепловой двигатель, работающий по замкнутому циклу, преобразует энергию из тепловой в механическую форму. При этом на одних этапах цикла двигателя к рабочему телу подводится энергия в тепловой форме, а на других - отводится в тепловой форме. Разница между подведенной и отведенной энергией в тепловой форме представляет собой результирующую работу W^ цикла. Чем больше тепловой энергии отводится от рабочего тела в цикле, тем меньше результирующая работа Жрез при одном и том же количестве подведенной тепловой энергии. КПД цикла снижается. Поэтому на практике стремятся уменьшить отвод энергии от рабочего тела в ходе циклического процесса.

Карно показал, что тепловой двигатель (машина) не может работать без подвода и отвода энергии в тепловой форме от рабочего тела. Тепловая машина работает между двумя источниками тепловой энергии - нагрева­телем и холодильником. Чтобы повысить эффективность такой тепловой машины, необходимо уменьшить отвод тепловой энергии в холодильник. Однако исключить вообще отвод тепловой энергии от рабочего тела в цикле теплового двигателя нельзя (на это указывает второй закон термодинами­ки).

Бели исключить отвод энергии в тепловой форме в холодильник, то КПД такого двигателя станет равным 1. В этом случае вся подведенная тепловая энергия Q\ должна быть преобразована в механическую форму W ^ = Qi [ Q 2 = 0]. Следовательно, можно отказаться от холодильника. В этом случае двигатель должен работать только с одним источником тепловой энергии - нагревателем (термостатом). Условная схема такого воображаемого двигателя (тепловой машины) приведена на рис. 8.44.

Так как температура термостата при отводе от него энергии в тепловой форме не изменяется, то тепловой двигатель (машина), представленный на рис. 8.44, можно назвать изотермическим . В этом двигателе тепловая энергия подводится к рабочему телу при постоянной температуре нагрева­теля (Ti = Idem ).

Идея построения такого двигателя (рис. 8.44) является заманчивой, но не осуществимой. Второй закон термодинамики указывает, что невозможна работа тепловой машины при наличии только одного источника теплоты (нагревателя).

Напомним, что «вечные» двигатели первого рода никогда не работали, так как противоречили первому закону термодинамики — всеобщему закону сохранения энергии. «Вечные» двигатели второго рода не противоречат первому закону термодинамики (они соответствуют его положениям). Сколько энергии подведено к термодинамической системе (в данном случае Qi), столько же и отведено от нее (W^ = Qi), учитывая эквивалентность теплоты и работы.

Формально двигатель (рис. 8.44) не соответствует определению вечного двигателя. «Вечный» двигатель первого рода в идеале должен работать вечно (не останавливаясь), если исключить возможные его поломки. «Веч­ный» двигатель второго рода даже в идеале не может работать вечно. Его название обусловлено другим обстоятельством. Если в качестве на­гревателя использовать воду, сосредоточенную на Земле, то двигатель (рис. 8.44) мог бы работать миллионы лет. При этом температура воды на Земле понизилась бы всего на несколько градусов. За 1700 лет работы такого двигателя температура воды на планете понизилась бы всего на 0,01 К. Для нас такой двигатель казался бы вечно работающим двигателем. Именно поэтому немецкий ученый В. Оствальд (1853-1932 гг.) назвал такой двигатель «вечным», понимая при этом его невозможность.

Несмотря на то, что изобретатели и ученые, работающие во многих областях науки и техники, знают ограничения, накладываемые вторым законом термодинамики, попытки создания вечного двигателя второго рода имеют место и сейчас. Поощряет их на такую деятельность тот факт, что если удастся обойти второй закон термодинамики, то это сразу решит проблему энергии на все века. И это тогда, когда мир стоит на грани истощения энергетических ресурсов.

Идеи вечных двигателей второго рода, как правило, появляются в периоды великих научных открытий, когда сами эти открытия еще не полностью осознаны и понятны.

Напрямую второй закон термодинамики обойти невозможно, а поэтому изобретатели стремятся создать такой двигатель на основе комбинации большого количества физических явлений. При такой комбинации различ­ных физических явлений, положенных в основу работы тепловой машины, можно и не заметить наличие всех процессов, оговоренных вторым законом термодинамики.

Рассмотрим несколько примеров таких двигателей.

На рис. 8.45 показа конструктивная схема «нуль-мотора» американского профессора Гэмджи. Замысел этого двигателя базируется на достижениях в области холодильной техники. Как известно, к концу XIX в. были в основном изучены свойства веществ в области низких и сверхнизких температур. Прототипом двигателя послужили аммиачная холодильная машина и установка для сжижения воздуха.

В специальном котле (рис. 8.45) находится жидкий аммиак. Котел находится в контакте с окружающей средой, а поэтому аммиак нагревается до температуры Тг = 300К (27° С). При этой температуре аммиак кипит (переходит в пар). По мере кипения аммиака давление на его жидкую фазу возрастает. При давлении 1МПа (10 атмосфер) и температуре Т\ = 300 К
кипение аммиака прекращается . Поэтому можно утверждать, что в котле будет находиться пар под давлением 1 МПа.

Таким образом, окружающая среда (воздух) является в рассматривае­мом двигателе верхним источником энергии в тепловой форме (Нагревате­лем] >. Этот факт соответствует второму закону термодинамики.

Из котла пар аммиака через впускной клапан направляется в рас­ширительную машину (детандер), где он расширяется. При расширении пара аммиака совершается работа над поршнем расширительной машины. Следовательно, энергия от пара передается поршню (окружающей среде), преобразуясь одновременно в механическую форму. В расширительной ма­шине происходит преобразование внутренней энергии рабочего тела (пара аммиака) в механическую энергию с одновременной отдачей ее поршню. Внутренняя энергия пара аммиака уменьшается, а поэтому уменьшается его внутренняя энергия. Внутренняя энергия пара зависит только от его температуры. Следовательно, в расширительной машине (детандере) температура пара аммиака уменьшается.

__ J __

\

Бели пар аммиака расширится до давления 0,1 МПа (1 атмосфера), то его температура понизится до 250К, т. е., станет равной - 23°С. При такой температуре аммиачный пар частично конденсируется (сжижается) в расширительной машине. Жидкий аммиак вместе с паром через выпускной клапан с помощью насоса откачивается в котел. Для привода насоса используется часть механической энергии, полученной в расширительной машине (детандере) при расширении паров аммиака. С помощью насоса давление жидкого аммиака повышается до 1МПа (10 атмосфер). Это необходимо для того, чтобы закачать аммиак в котел [в котле давление равно 1 МПа (10 атмосфер)]. В котле аммиак снова испаряется, нагреваясь от окружающей среды. Цикл должен повторяться. Таким образом, по мнению проф. Гэмджи, должен работать предложенный двигатель.

Как видим, двигатель Гэмджи должен работать по замкнутому циклу без отвода части подведенной тепловой энергии в окружающую среду. Здесь не следует путать факт охлаждения паров аммиака в детандере с отводом энергии в форме теплоты в окружающую среду. Приемник тепло­вой энергии в двигателе Гэмджи отсутствует. Двигатель должен работать, отдавая потребителю механическую энергию за вычетом небольшой ее части, затраченной на привод насоса.

Анализ показывает, что работа двигателя не противоречит положениям первого закона термодинамики - сколько энергии подведено к двигателю (в данном случае в тепловой форме), столько же ее отведено (в механиче­ской форме).

Проанализируем энтропийный процесс работы двигателя. На входе энтропия потока энергии равна: SBX = Q 0 . C / T 0 . C > 0.

На выходе энтропия потока энергии равна:

Действительно, на выходе получаем энергию в механической форме, являющейся высокоорганизованной.

В соответствии с вторым законом термодинамики изменение энтропии рабочего тела в ходе осуществления циклического процесса равно нулю. В данном случае изменение энтропии аммиака не равно нулю

Что противоречит второму закону термодинамики.

В идеальном случае на привод насоса потребуется столько механиче­ской энергии, сколько ее получается в расширительной машине. В этом случае отводить энергию от машины в тепловой форме не представляется возможным. Фактически машина работает по нулевому циклу, в котором полезная работа равна нулю. Таким образом, функциональные возможно­сти «нуль-мотора» Гэмджи соответствуют его названию.

Двигатель Гэмджи можно заставить работать, внеся в него конструк­тивные изменения в соответствии со вторым законом термодинамики. На рис. 8.46 показана конструктивная схема усовершенствованного двигателя. В конструкцию двигателя перед насосом введен конденсатор пара (теп-

Лообменник), отбирающий энергию от паров аммиака при температуре, меньшей температуры окружающей среды (Т < Т0.с). Естественно, что температура теплообменника (приемника теплоты) должна поддерживать­ся искусственно ниже температуры окружающей среды. В этом случае двигатель Гэмджи будет работать. Затраты энергии на привод насоса будут значительно уменьшены. Но вторую часть получаемой в расширительной машине работы пришлось бы затратить на работу специальной холодиль­ной машины, поддерживающей температуру холодильника (теплообменни­ка) ниже температуры окружающей среды.

Таким образом, введя специальный теплообменник, мы заставили ра­ботать двигатель Гэмджи. Но достигнутый результат снова оказывается Нулевым. Полезной работы двигатель не дает (он не может приводить в действие ни одного потребителя). Следовательно, двигатель, работающий с верхним источником теплоты при температуре окружающей среды, яв­ляется неработоспособным.

На рис. 8.47 показана схема так называемой «машины атмосферного тепла», предложенная проф. Шелестом, пионером тепловозостроения в России. Эта машина состоит из двух контуров. Первый контур включает компрессор К и турбину Т, соединенные валом. Турбина Т приводит в дей­ствие компрессор К. При вращении колеса компрессора К им засасывается воздух при параметрах окружающей среды (давлении рох и температуре Т0 .с). При сжатии воздух нагревается 7\ > Т0.с. В теплообменнике горячий воздух нагревает рабочее тело второго контура. Воздух при этом охла­ждается до температуры окружающей среды Г0.с. После теплообменника охлажденный сжатый воздух поступает в турбину Т, где совершает работу. При совершении работы он расширяется до давления окружающей среды Ро. с- При этом в результате совершения работы в турбине температура воз­духа еще понижается. Из турбины воздух выбрасывается в окружающую среду.

Явления, происходящие в первом контуре позволяют утверждать, что он работает как тепловой насос, перенося теплоту с нижнего уровня То с на верхний Ti > Тох.

Второй контур представляет собой тепловую машину, работающую по теплосиловому циклу. Во втором контуре в качестве рабочего тела исполь­зуется некоторое вещество, которое испаряется при низкой температуре. Поступая в теплообменник, это рабочее тело быстро испаряется, поглощая тепловую энергию в количестве Q. После теплообменника рабочее тело поступает в главную турбину Т2, где совершает полезную работу. При этом рабочее тело охлаждается. После турбины Т2 рабочее тело поступает в конденсатор, в котором переводится в жидкое состояние.

Турбина Т2 приводится в действие насос Я, который снова сжимает рабочее тело, подавая его в теплообменник и далее в турбину. Часть работы W, получаемой в главной турбине, используется для привода турбоком­прессора первого контура и электрического генератора Г. С генератором соединен обычный электродвигатель, который выполняет полезную рабо­ту W .

Таким образом, «машина атмосферного тепла» представляет комбина­цию двух тепловых машин, работающих по взаимно противоположным циклам. Первая машина (контур) работает по обратному циклу (тепловой насос), а вторая машина (контур) -по прямому циклу. Вторая машина полностью соответствует требованиям второго закона термодинамики. В ней есть расширительная машина (турбина Т2), рабочее тело и два ис­точника теплоты с различными температурами (верхний — теплообменник, нижний - конденсатор). Первая машина не соответствует требованиям вто­рого закона термодинамики, так как работает только с одним источником теплоты - окружающей средой. Второго (нижнего) источника теплоты здесь и не может быть, так как его температуру пришлось бы искусственно поддерживать ниже температуры окружающей среды. Это требует затраты механической энергии.

Следовательно, первая машина неработоспособна. Если первая машина не может работать, то и вторая также неработоспособна, так как исполь­зует энергию сжатого воздуха, поступающего в теплообменник из первой машины.

Таким образом, внешне машина атмосферного тепла является заманчи­вой идеей, а, по сути, она представляет собой бесполезную конструкцию.

Были предложены и другие конструкции «вечных» двигателей второго рода, которые «успешно» подтвердили свою неработоспособность. Вместе с тем, к анализу работы таких двигателей следует подходить очень тща­тельно. Как правило, их конструкция сложна, а поэтому не всегда известны потоки энергии в них. При этом источники энергии могут быть спрятаны. Может быть также и непонятным сам принцип действия такой машины. В результате этого может сложиться мнение, что рассматриваемая тепло­вая машина представляет собой один из вариантов «вечного» двигателя второго рода.

В технике используются тепловые машины, которые нам могут пока­заться в некотором смысле «вечными» двигателями второго рода. Как известно, биметаллическая пластинка при нагревании сгибается. Изгиб пластинки обусловлен тем, что материалы, из которых она изготовлена, имеют различный коэффициент линейного расширения. Тот материал, который имеет больший коэффициент линейного расширения, стремится и больше расшириться. Так как материалы скреплены между собой, то возникает изгиб пластинки (выпуклость образуется со стороны материала, имеющего больший коэффициент линейного расширения).

Если такую биметаллическую пластинку поместить в окружающую сре­ду, то она будет периодически изгибаться и выпрямляться. При повышении температуры окружающей среды она будет изгибаться, и при понижении - выпрямляться. Если к концу такой биметаллической пластинки подвесить груз, то он будет периодически подниматься и опускаться. Следовательно, пластинка будет совершать полезную работу. Она может, например, заво­дить пружину часов.

На первый взгляд кажется, что это все тот же «вечный» двигатель второго рода. Ведь он содержит только один источник теплоты - окру­жающую среду. На самом деле окружающая среда здесь периодически выступает в качестве то нагревателя (при повышении температуры), то охладителя (при понижении температуры). При этом для понижения температуры окружающей среды не используется механическая энергия, получаемая в результате изгиба биметаллической пластинки. Повышение и понижение температуры окружающей среды вызвано естественными процессами, протекающими в ней. Это эквивалентно приведению биметал­лической пластинки в контакт то с нагревателем, то с охладителем.

Такие работающие кажущиеся «вечными» двигатели называют псевдо­вечными двигателями второго рода.

  • Вечный двигатель первого рода - двигатель (воображаемая машина), способный бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Их существование противоречит первому закону термодинамики. Согласно закону сохранения энергии
  • Вечный двигатель второго рода - воображаемая машина, которая будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел (см. Демон Максвелла). Они противоречат второму закону термодинамики. Согласно Второму началу термодинамики , все попытки создать такой двигатель обречены на провал.

История

Индийский или арабский перпетуум мобиле с небольшими косо закрепленными сосудами, частично наполненными ртутью.

Попытки исследования места, времени и причины возникновения идеи вечного двигателя - задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде . В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своем стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикрепленными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещенных на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе» . Первые проекты вечного двигателя в Европе относятся к эпохе развития механики , приблизительно к XIII веку. К XVI - XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран. Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя.

Неудачные конструкции вечных двигателей из истории

Рис. 1. Одна из древнейших конструкций вечного двигателя

На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо , в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага , должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

Однако, если такое колесо изготовить, оно останется неподвижным. Дифференциальная причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

Рис. 2. Конструкция вечного двигателя, основанного на законе Архимеда

На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда . Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

Здесь не учтено следующее: выталкивающая сила - это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет превышать суммарную силу, действующую на остальные баки. Поэтому вся система просто прокрутится по часовой стрелке, пока не выльется вода.

Патенты и авторские свидетельства на вечный двигатель

Литература

  • Вознесенский Н. Н. О машинах вечного движения . М., 1926.
  • Ихак-Рубинер Ф. Вечный двигатель . М., 1922.
  • Кирпичёв В. Л. Беседы по механике . М.: ГИТЛ, 1951.
  • Мах Э. Принцип сохранения работы: История и корень его . СПб., 1909.
  • Михал С. Вечный двигатель вчера и сегодня . М.: Мир, 1984.
  • Орд-Хьюм А. Вечное движение. История одной навязчивой идеи . М.: Знание, 1980.
  • Перельман Я. И. Занимательная физика . Кн. 1 и 2. М.: Наука, 1979.
  • Петрунин Ю. Почему идея вечного двигателя не существовала в античности? // Петрунин Ю.Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. - М.: КДУ, 2006, с. 75-82

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Вечный двигатель второго рода" в других словарях:

    - … Википедия

    Перпетуум м о б и л е (лат. perpetuum mobile непрерывное движение), 1) В. д. первого рода воображаемая машина, к рая, будучи раз пущена в ход, совершала бы работу неограниченно долгое время, не потребляя энергии извне. В. д. первого рода… … Большой энциклопедический политехнический словарь

    Вечный двигатель - (лат. perpetuum mobile) воображаемая машина, которая может совершать работу неограниченное время, не заимствуя энергии извне. Невозможность вечного двигателя 1 го рода одна из формулировок 1 го начала термодинамики. Невозможность вечного… … Концепции современного естествознания. Словарь основных терминов

    Мифология науки система сакрального знания в науке, широко распространённые, массовые заблуждения. Мифы в науке возникают при её популяризации. Чтобы донести до обычного читателя научные факты или открытия в доступной форме авторы научно… … Википедия

    Вечный двигатель (лат. Perpetuum Mobile) воображаемое устройство, позволяющее получать полезную работу, большую, чем количество сообщённой ему энергии (КПД больше 100 %). Содержание 1 Современная классификация вечных двигателей 2 История … Википедия

    ТЕРМОДИНАМИКА - ТЕРМОДИНАМИКА, отдел учения о теплоте, в обширном смысле слова учение об энергии н потому имеет отношение ко всем физическим, химическим и биол. явлениям. Она построена на двух положениях, называемых началами, полученных опытно, чуждых каких… … Большая медицинская энциклопедия

    Наука о наиб. общих св вах макроскопич. физ. систем, находящихся в состоянии термодинамич. равновесия, и о процессах перехода между этими состояниями. Т. строится на основе фундам. принципов (начал), к рые явл. обобщением многочисл. наблюдений и… … Физическая энциклопедия

    - (Thomson) (в 1892 за научные заслуги получил титул барона Кельвина, Kelvin) (1824 1907), английский физик, член (1851) и президент (1890 1895) Лондонского королевского общества, иностранный член корреспондент (1877) и иностранный почётный член… … Энциклопедический словарь

    Раздел прикладной физики или теоретической теплотехники, в котором исследуется превращение движения в теплоту и наоборот. В термодинамике рассматриваются не только вопросы распространения теплоты, но и физические и химические изменения, связанные … Энциклопедия Кольера

Есть "Вечный двигатель второго рода"!

...- Г-голубчики, - сказал Федор Симеонович озадаченно, разобравшись в почерках. - Это же п-проблема Бен Б-бецалая. К-калиостро же доказал, что она н-не имеет р-решения.

Мы сами знаем, что она не имеет решения, - сказал Хунта, немедленно ощетиниваясь. - Мы хотим знать, как ее решать.

К-как-то ты странно рассуждаешь, К-кристо... К-как же искать решение, к-когда его нет? Б-бесмыслица какая-то...

Извини, Теодор, но это ты странно рассуждаешь. Бессмыслица - искать решение, если оно и так есть. Речь идет о том, как поступать с задачей, которая решения не имеет...

А.Стругацкий, Б.Стругацкий. Понедельник начинается в субботу.

Уважаемые Господа!

Вечный двигатель второго рода это такой двигатель, который не подчиняется Второму закону термодинамики.

В 1824 году С. Карно в своем сочинении «Размышления о движущей силе огня и о машинах, способных развивать эту силу» высказал мысль, что «тепловая машина не поглощает тепло, превращая ее в работу, а передает его холодному телу». В. Томпсон (лорд Кельвин), Р. Клаузиус, М. Планк возвели эту мысль в ранг закона. Современная трактовка Второго закона термодинамики звучит так: "Для перевода теплоты в работу необходим источник тепла и охладитель более низкой температуры". Того, кто осмеливался противоречить этому закону, называют изобретателями вечного двигателя второго рода.

Этот закон распространяется на тепловые электростанции. Наверное, все знают, что для выработки электроэнергии надо подвести тепло к воде в парогенераторе «ПГ» (см. Рис. 1), затем испарить ее и поднять давление пара. После этого пар с высоким давлением поступает в турбину «Т», вращает ее ротор вместе с ротором генератора «Г», а последний вырабатывает электроэнергию. После турбины, пар с низким давлением поступает в конденсатор «К» (охладитель) и там конденсируется - пар переходит в состояние жидкости (воды). После конденсатора, вода снова подается в парогенератор конденсатным насосом «КН».

При отводе тепла из конденсатора, в окружающую среду (реки, озера, моря) выбрасывается более половины подведенного тепла. Вот как мы греем "матушку Землю!

Выброс тепла в конденсаторе делается для того, чтобы уменьшить затраты энергии на поднятие давления пара. Для поднятия давления водяного пара с низким давлением, сначала его надо перевести в состояние жидкости (сконденсировать), поднять давление воды в насосах, подать в парогенератор, снова подвести к воде тепло для ее испарения и поднятия давления пара.

Я решил придумать что-нибудь для увеличения КПД цикла и улучшения экологической обстановки в местах размещения ГРЭС, ТЭЦ, АЭС.

Для изобретательства в теплоэнергетике надо знать азы термодинамики.

При нормальных условиях для выкипания воды, сначала надо нагреть ее до 100°С, затем подвести тепло для испарения. Испарение происходит при отрыве молекул воды с поверхности кипения. О распределении внутренних энергий в процессе кипения можно судить по Рис.2.

Здесь, I" - теплота идущая на нагрев воды до температуры кипения.

R - теплота идущая на испарение кипящей воды - теплота парообразования

При дальнейшем подводе тепла к пару, идет его перегрев – увеличение внутренней энергии с повышением температуры.

Теплота парообразования R состоит из теплоты разъединения молекул U и теплоты расширения L. При нормальных условиях теплота расширения L в 12,5 раз меньше теплоты разъединения U.

В процессе получения электроэнергии, теплота разъединения U выбрасывается в окружающую среду, а теплота расширения L участвует в полезной работе. Вот из-за неё то и вся драка пойдет.

Я подумал, все дело в состоянии массы - жидкое оно, или газообразное. Как это так? Для поднятия давления в жидкости надо затратить энергии во много раз меньше, чем для поднятия того же давления в паре? Значит надо найти другой, менее энергоемкий способ поднятия давления пара, или найти другой способ перевода пара в состояние жидкости (воды).

Известно, что "Удавалось перегревать воду при нормальных условиях на десятки градусов. Однако, в конце концов, такая вода вскипает. Кипение происходит крайне бурно, напоминая взрыв".

Я задал себе задачу успокоить перегретую воду - найти способ ее успокаивания (чтобы не взрывалась). Потом создать такие условия, когда внутренняя энергия перегретой воды была бы больше, чем внутренняя энергия пара при том же давлении сжатия.

Моя профессия - инженер теплоэнергетик, специализация - виброналадка вращающегося оборудования. Т.е. в голове всякие ускорения, центробежные силы и др. Поэтому, возник вопрос, как влияют центробежные силы инерции на процесс кипения жидкости?

Представьте, что Вас послали на Солнце в барокамере и термостате. На Солнце вес увеличивается в 30 раз и составит для человека 2 - 3 тонны. Ну и как в этих условиях бегать, прыгать? Короче, летальный исход от веса! Ну а молекулы воды другое дело. К ним можно подвести много тепла и тогда произойдет их отрыв (прыжок) с поверхности. Но с увеличением тепла в жидкой массе должна расти ее температура кипения. Т.е. воду для кипения надо будет нагревать не до 100°С, а до большей температуры.

Имитировать увеличение веса в молекулах воды можно во вращающемся цилиндре (см. Рис. 3). Вес молекул увеличится от возрастания центробежных сил в массе.

Я провел опыт по испарению воды во вращающемся цилиндре. При увеличении центробежных сил, от увеличения радиуса поверхности кипения возрастала температура кипения. В первом приближении определил увеличение внутренней энергии, при увеличении радиуса кипения на один сантиметр.

Получилось, что температура кипения чистой воды увеличивается не только от увеличения давления сжатия, но и от увеличения центробежных сил в молекулах на вращающейся поверхности. Этот эффект был также открыт в 1971 году в Америке.

Согласно данных измерений в опыте, я просчитал, что для того, чтобы внутренняя энергия кипящей воды была равна внутренней энергии пара, при нормальных условиях, надо иметь радиус внутренней вращающейся поверхности воды в цилиндре 1,9 метра. Т.о. если этот радиус будет больше, то пар с нормальными параметрами будет переходить в состояние жидкости на этой поверхности (силы не хватит оторваться от поверхности "Солнца"). Процесс перехода пара в состояние жидкости на вращающейся поверхности назван «Коллапсация пара".

Расчеты показали, что энергия массы, вращающейся с частотой n = 3000 об/мин на поверхности с радиусом 1,9 метра близка к энергии движения массы со звуковой скоростью и к теплоте расширения L.

Материалы по опытам со сверхзвуковыми движениями потоков газов говорят об одной физической природе скачков уплотнения на острие крыла и переходом пара в состояние жидкости на вращающейся поверхности. Причем, затрачиваемые энергии в процессах перехода пара в состояние жидкости равны теплоте расширения пара L. Исходя из этого, для уточнения, мной выполнен расчет радиуса коллапсации пара для компенсации теплоты расширения. Этот радиус получился равным 1,05 метра.

Для подтверждения правильности рассуждений рассмотрен процесс эрозионного износа лопаток паровых турбин (вырывы металла жидкостью), работающих на сухом насыщенном паре при атмосферном давлении. Начало эрозионного износа лопаток начинается на радиусе примерно 1 метр. Эти наблюдения подтверждают также специалисты МЭИ. Значит, рассуждения и расчеты радиуса коллапсации выполнены правильно.

Т.о. найден новый способ перевода пара в состояние жидкости!

Представьте, что в цилиндре Рис. 3 близко к наружному диаметру выполнены отверстия, а сам цилиндр помещен в корпус с напорным и всасывающим патрубками и системой уплотнений. Это будет центробежный насос с гидрозатвором в рабочем колесе. На Рис. 4 показан разрез насоса.

Работа насоса происходит следующим образом.

Пар с низким давлением поступает во всасывающий патрубок насоса. Попадая в отверстия барботажного цилиндра, он раскручивается и приобретает центробежную силу. Под действием этой силы пар направляется к поверхности гидрозатвора. Когда молекулы пара окажутся на этой поверхности, они перейдут в состояние перегретой жидкости. Центробежные силы не дадут им снова оторваться от поверхности. По радиусу гидрозатвора будет происходить приращение давления сжатия перегретой воды, как в обычном центробежном насосе. С большим давлением перегретая вода будет выходить из гидрозатвора рабочего колеса насоса. После выхода из рабочего колеса перегретая вода прекратит вращаться и снова перейдет в состояние пара, но с высоким давлением.

Энергия, затрачиваемая на коллапсацию единицы массы пара будет равна теплоте расширения L. Т.е. для повышения давления пара не надо будет выбрасывать теплоту разъединения U. Для перевода пара в состояние жидкости надо будет затрачивать работу равную теплоте расширения L. Т.к. теплота L в турбинах также используется для совершения работы, то тепло, используемое полезно, будет равно теплоте перегрева пара.

Схема работы паросиловой установки с применением двухфазного насоса будет выглядеть, как показано на Рис. 5.

Здесь: ПП – пароперегреватель; Т – турбина; Г – Генератор; ДН – Двухфазный насос.

Из двухфазного насоса, пар с высоким давлением поступает в пароперегреватель и там перегревается. Перегретый пар с высоким давлением из пароперегревателя поступает на турбину. В турбине тепловая энергия пара переходит в энергию вращения ротора турбины. Последний вращает ротор генератора, который вырабатывает электроэнергию. После турбины, пар низкого давления поступает в двухфазный насос. В двухфазном насосе происходит повышение давления пара низкого давления до давления пара высокого давления. Далее цикл повторяется.

Создан двигатель в котором локально нарушается второе начало термодинамики.

Физики из МФТИ выяснили, как создать «локальный» вечный двигатель второго рода - квантовое устройство, в котором не соблюдается второе начало термодинамики и КПД которого может достигать 100%. Однако второе начало в нём нарушается только локально, в рамках системы в целом законы физики остаются незыблемыми.

Второй закон термодинамики гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, или, в иной формулировке - величина энтропии (степени неупорядоченности) в замкнутой системе либо растёт, либо остаётся постоянной. Согласно ещё одной формулировке закона, КПД тепловой машины никогда не может достигать 100%, иными словами, невозможен вечный двигатель второго рода.

«Любой тепловой двигатель состоит из нагревателя, который собственно и является источником энергии, и холодильника, задача которого состоит в охлаждении рабочего тела двигателя. Холодильник понижает энтропию двигателя и при этом неизбежно тратит впустую часть тепловой энергии, полученной от нагревателя. Именно поэтому КПД теплового двигателя никогда не достигает 100%», - поясняет ведущий автор исследования Андрей Лебедев, сотрудник Технического университета Цюриха и МФТИ.

Ранее группа под руководством ведущего научного сотрудника Лаборатории квантовой теории информации МФТИ и Института теоретической физики имени Л. Д. Ландау РАН Гордея Лесовика, пытаясь доказать справедливость второго закона термодинамики для квантовых систем, обнаружила, что в квантовом мире он может при определённых условиях нарушаться.

Оказалось, что в квантовых системах относительно небольшого, но макроскопического размера - сантиметры и даже метры (в линейном измерении) - энтропия может снижаться, но этот процесс происходит без передачи тепловой энергии, за счёт явления квантовой запутанности.

В новой статье, опубликованной в журнале Physics Review A, Лебедев, Лесовик и их коллеги из Цюриха описали квантовую тепловую машину, КПД которой может достигать 100%. Она состоит из нескольких квантовых элементов - кубитов, которые могут находиться в состоянии квантовой запутанности друг с другом. Один из кубитов поглощает тепло, но в силу его квантовой природы эту энергию можно использовать только с вероятностью 50%. Чтобы извлекать энергию с вероятностью 100%, нужно снизить его энтропию, сделать это состояние «чистым» (в терминологии квантовой механики). Эту задачу решает вспомогательный чистый кубит, который обменивается своим квантовым состоянием с термализованным «грязным» состоянием рабочего кубита. Важно, что при этом передачи энергии между двумя кубитами не происходит.

«Можно сказать, что избыточная энтропия телепортируется из системы наружу во вспомогательный кубит, который играет роль квантового «демона Максвелла»», - говорит Лесовик.


После «вычищения» рабочего кубита оказывается, что собрать энергию с вероятностью 100% в одном кубите - это всё ещё непростая задача. Чтобы её решить, пришлось вдвое увеличить число рабочих элементов - кубитов.

«Финальная часть цикла - «демонские» (их, кстати, по смыслу можно назвать скорее «ангельскими» - за их очистительно-информационную деятельность) кубиты нужно почистить обычным образом, с затратой энергии, но это происходит вдали от системы. Важно подчеркнуть, что на этой стадии в объёме, заключающем в себе и систему и «демона/ангела», справедливость второго закона восстанавливается», - говорит Лесовик.

Сейчас группа занимается детальной разработкой установки для экспериментальной проверки своей теории на базе сверхпроводящих кубитов - трансмонов. опубликовано