Униполярный и биполярный шаговый двигатель. Магнитные двигатели. Виды и устройство. Применение и работа

В чем принципиальные различия между биполярным и униполярным шаговым двигателем, какой стоит выбрать?

В данной статье будут рассмотрены два типа двухфазных шаговых двигателя - униполярный и биполярный . Подобные названия появились благодаря тому, что в двухфазных шаговых двигателях встречаются два основных типа обмотки катушек, один - биполярный, другой - униполярный. Далее - рассмотрим оба типа подробнее, чтобы разобраться какой из них является более эффективным.

Униполярный шаговый двигатель

Униполярные шаговые двигатели, так же как и биполярные, имеют две обмотки, и каждая из них имеет центральный отвод. В зависимости от требуемого направления магнитного поля, в работу включается соответствующая половина обмотки, что достигается простым переключением ключей и существенно упрощает схему драйвера. Подобный механизм позволяет в качестве управляющей системы использовать простейший униполярный драйвер с четырьмя ключами.

Униполярный двухфазный шаговый двигатель имеет шесть выводов. Но так же бывает, что средние отводы катушек внутри соединены, что позволяет шаговому двигателю иметь только пять выводов. Благодаря простоте в эксплуатации, данные двигатели имеют широкую популярность среди как новичков любителей, так и во многих промышленных отраслях, поскольку униполярный шаговый двигатель является самым примитивным и дешевым способом получить высокоточные угловые движения.

Биполярные шаговые двигатели

С биполярными шаговыми двигателями дело обстоит немного иначе. Данные двигатели имеют только одну обмотку в одной фазе. Управляющая схема биполярного двигателя должна быть намного сложнее, чтобы менять направление магнитного поля с целью изменить направление тока в обмотке. Этого можно достигнуть с помощью схемы H-bridge. К тому же, для упрощения задачи можно приобрести несколько драйверных чипов, которые вам помогут. Биполярные шаговые двигатели, в отличие от униполярных имеют два вывода на одну фазу, ни один из которых не является общим. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

Униполярные шаговые двигатели, в отличие от биполярных, имеют два вывода за фазу, ни одна из которых не является общей. Иногда H-brigde сопровождают статические эффекты трения, что происходит с определенными приводными топологиями, однако это легко можно исправить, сгладив сигнал шагового двигателя на более высоких частотах.

Выводы

Биполярные шаговые двигатели немного сложнее в управлении, но при схожих габаритах, биполярный двигатель способен обеспечить больший момент, в сравнении с униполярным. Однако униполярный двигатель, в противовес биполярному, проще в эксплуатации, и вполне сгодится для привода устройств с небольшой мощностью - бытовая техника (стиральная машина, холодильник), магнитофоны и т.д.


Е. И. Вараксина ,
ГГПИ им. В.Г.Короленко, г. Глазов, Удмуртская респ.;
Проф. В. В. Майер ,
, ГГПИ им. В.Г.Короленко, г. Глазов, Удмуртская Респ.

Учебные униполярные электродвигатели

Предлагаются учебные экспериментальные исследования униполярных электродвигателей. Подробно описаны конструкции приборов и технологии их изготовления. Внимание читателя обращается на богатейшую информацию о моделях униполярных двигателей в интернете. Статья написана так, что её можно непосредственно рекомендовать учащимся для изучения и последующего планирования исследовательского проекта. При необходимости учитель может давать школьникам отдельные задания, используя для их формулировки соответствующие фрагменты статьи.

В школе изучают коллекторный электродвигатель постоянного тока. Он состоит из неподвижного статора, вращающегося ротора и коллектора, обеспечивающего питание двигателя электрическим током. В качестве статора используют двухполюсный постоянный магнит или электромагнит. Ротор представляет собой электромагнит, ток на который подаётся через полукольца и щётки, образующие коллектор. Однако первый электродвигатель, созданный в 1821 г. великим Фарадеем, был униполярным: в нём использовался только один полюс магнита, коллектор вообще отсутствовал. Экспериментальным исследованиям униполярных электродвигателей и посвящена настоящая статья.

1. Униполярный электродвигатель

Рис. 1. Демонстрационный униполярный электродвигатель

Известно немало различных конструкций униполярных электродвигателей. Один из приборов, применявшихся для демонстрации принципа действия униполярного электродвигателя, изображён на рис. 1. В нём вокруг северного полюса постоянного магнита 1 вращается проволочная рамка 2 . Середина рамки соединена с остриём, которое погружено в чашечку со ртутью 3 , концы рамки опущены в кольцевой сосуд с ртутью 4 .

Электрический ток от правой клеммы проходит через центральную металлическую стойку, ртутный контакт 3 , ветви рамки 2 , кольцевой сосуд с ртутью 4 и боковую металлическую стойку к левой клемме. Воспользовавшись правилом левой руки, нетрудно сообразить, что для указанных на рисунке положения северного магнитного полюса и направления тока на рамку действует пара сил, заставляющая её вращаться в направлении, показанном стрелками.

2. Обсуждение конструкции униполярного двигателя

Рассмотренную модель униполярного двигателя в настоящее время нельзя использовать для воспроизведения в школе или дома. Дело не только в том, что она конструктивно сложна. Главная причина в том, что пары ртути ядовиты, поэтому применение ртути в учебных опытах неприемлемо.

Ртуть в описанных приборах выполняет две функции. Во-первых, обладая хорошей проводимостью, ртуть обеспечивает надёжный электрический контакт с небольшим электрическим сопротивлением между подвижными и неподвижными проводниками. Во-вторых, являясь при комнатной температуре жидкостью, создаёт сравнительно небольшое механическое сопротивление движущимся в ней проводникам.

Отсюда следует, что для создания пригодного для учебных опытов прибора нужно решить проблему хорошего контакта и малого сопротивления между движущимися проводниками.

Сразу приходит в голову идея использовать в кольцевом сосуде вместо ртути доступный электролит, например, водный раствор медного купороса. А как быть со ртутным контактом 3 ? Нужно, чтобы сила трения, возникающая при вращении рамки на острие, была мала, а контакт тем не менее был надёжным.

Нетрудно сообразить, что этим противоречивым требованиям может удовлетворить магнитный контакт, состоящий из постоянного стального магнита и примагниченного к его полюсу стального острия.

3. Учебная модель униполярного двигателя

Рис. 2. Основные элементы учебной модели униполярного двигателя

Для изготовления учебной модели униполярного двигателя придётся немного потрудиться. Все элементы, необходимые для сборки модели и выполнения экспериментального исследования, изображены на рис. 2.

Из медной проволоки диаметром около 1 мм согните П-образную рамку размером примерно 80 × 200 мм. Середину рамки и концы медной проволоки очистите от изоляции. От стального гвоздя диаметром 3–4 мм отрежьте кусок длиной 2–3 см и хорошо заострите один его конец. Получившийся стальной сердечник припаяйте к середине рамки из медной проволоки и подвесьте его к полюсу зажатого в штативной лапке стального полосового или подковообразного магнита. К другому полюсу магнита примагнитьте стальную шайбу с прикрученным к ней многожильным медным проводом в полихлорвиниловой изоляции. Толкните рамку, и вы увидите, как легко она колеблется и крутится на магнитном подвесе.

Подберите цилиндрический пластиковый сосуд диаметром примерно 110 мм и глубиной 40 мм. В центре дна сосуда сделайте круглое отверстие и посредством резинового колечка герметично закрепите в нём медный электрод диаметром 4–6 мм. Вместо медного можно использовать угольный электрод, в качестве которого подойдёт анод одного из элементов батареи карманного фонаря. С частью электрода, выступающей из дна сосуда вниз, соедините многожильный медный провод в изоляции. Сосуд установите на кольцевой керамический магнит диаметром 80 мм от старого динамика.

Статья подготовлена при поддержке салона свадебной и вечерней моды «моя Леди». Если Вы решили приобрести качественный и надежный костюм или платье, то оптимальным решением станет обратиться в салон «моя Леди». На сайте, расположенном по адресу www.salonmylady.ru, вы сможете, не отходя от экрана монитора, заказать офисные платья и костюмы по выгодной цене. Более подробную информацию о ценах и акциях действующих на данный момент вы сможете найти на сайте www.salonmylady.ru.

Рис. 3. Учебная модель униполярного двигателя в работе

Из пенопласта или другого материала малой плотности сделайте диск с отверстием в центре так, чтобы он мог свободно плавать на поверхности жидкости вокруг угольного электрода. Возьмите также две батарейки карманного фонаря на 4,5 В и соедините их последовательно. В стакане воды приготовьте насыщенный раствор медного купороса. Теперь всё готово для эксперимента.

В стоящий на магните пластиковый сосуд налейте раствор медного купороса. Над сосудом в магнитном держателе подвесьте проволочную рамку так, чтобы её оголенные концы погрузились в электролит. Провода, идущие от магнитного держателя и от угольного электрода, соедините с полюсами одной батарейки так, чтобы на прибор было подано напряжение 4,5 В. Если всё сделано правильно, вы увидите, что рамка начинает медленно вращаться вокруг своей оси!

Увеличьте напряжение – рамка начнёт крутиться значительно быстрее. Понятно, что если у вас под руками имеется источник, дающий большее напряжение, вы можете ещё увеличить скорость вращения ротора своего униполярного двигателя. Смените полярность напряжения – и рамка начнёт крутиться в противоположную сторону.

Посмотрите в сосуд с жидкостью: вы видите, что электролит также вращается, но в сторону, противоположную вращению рамки. Чтобы лучше продемонстрировать это явление, поместите на поверхность электролита плавающий диск: он будет крутиться в одну сторону, а рамка – в противоположную (рис. 3)!

4. Современные постоянные магниты

Успех построенной вами модели униполярного электродвигателя в значительной мере обеспечен мощным магнитным полем, создаваемым кольцевым керамическим магнитом. Основой этого магнита является феррит – керамический ферромагнитный материал, получивший широкое распространение около полувека назад.

Рис. 4. Внешний вид неодимовых магнитов

Однако за прошедшие после создания ферритовых магнитов десятилетия техника шагнула далеко вперёд. Современные неодимовые магниты, которые изготавливаются из сплава редкоземельного металла неодима c железом и бором (NdFeB), не идут ни в какое сравнение с керамическими. Они обладают огромной остаточной магнитной индукцией и весьма значительной коэрцитивной силой. Кроме того, поверхности этих магнитов покрыты защитным проводящим слоем. Сфера применения неодимовых магнитов настолько обширна, что легче указать те области, в которых эти магниты пока не используются.

Неодимовые магниты небольших размеров (рис. 4) вполне доступны по цене, и нет ничего проще, как приобрести их в интернет-магазине. Будем считать, что в вашем распоряжении имеется несколько неодимовых магнитов с продольной поляризацией в виде никелированных дисков или шайб диаметром 8–19 мм и толщиной 2–8 мм. На всякий случай напомним, что небольшие неодимовые магниты цилиндрической формы можно извлечь из вышедших из строя миниатюрных динамиков, телефонов и другой электронной техники.

5. Современные модели униполярного двигателя

Теперь приступим к созданию неодимового аналога двигателей, изображённых на рис. 1, 3.

Рис. 5. Униполярный двигатель с неодимовыми магнитами: а – верхний контакт отсутствует, т.к. на катоде элемента лежит изолирующая прокладка; б – прокладка убрана, двигатель работает

К положительному полюсу гальванического элемента 1 примагнитьте один или несколько неодимовых магнитов 2 (рис. 5, a ). Из медной проволоки диаметром около 1 мм согните рамку 3 , форма которой понятна из фотографии. Очистите от изоляции середину и концы рамки. Установите середину рамки на отрицательный полюс элемента так, чтобы её концы слегка касались боковой поверхности магнита. Как только вам удастся уравновесить рамку и обеспечить такой электрический контакт, что по ней пойдёт ток, рамка начнёт вращаться вокруг оси гальванического элемента (рис. 5, б )!

Чтобы вращение было заметно издали, к рамке можно приклеить полоски разноцветной изоленты.

6. Впечатляющая демонстрация униполярного двигателя

Размышляя об униполярном двигателе, мы пришли к выводу, что было бы интересно разработать такую конструкцию, которая обеспечивает вращение массивного ротора. Но такой ротор нужно ещё сделать. А что, если вместо металлического ротора использовать массивные гальванические элементы?

Рис. 6. Демонстрационный униполярный двигатель с массивным ротором

На рис. 6, а показано, к чему привели мысли о мощном униполярном двигателе. Демонстрационную модель униполярного двигателя соберите так. В муфте универсального штатива горизонтально закрепите стальной никелированный стержень 1 и к нему через стальной шарик 2 диаметром 8 мм от подшипника подвесьте неодимовый магнит 3 диаметром 10 мм и толщиной 2 мм. К магниту присоедините анод гальванического элемента 4 на 1,5 В. К первому гальваническому элементу посредством такого же неодимового магнита 5 присоедините второй элемент 6 так, чтобы оба элемента были включены последовательно. На катод второго элемента навесьте 2–3 неодимовых магнита 7 диаметром 19 мм и толщиной 6 мм. С помощью стальной шайбы на магнитах закрепите изогнутую из толстой бумаги П-образную полоску 8 , служащую индикатором вращения. На стержне 1 изолентой закрепите оголённый конец многожильного провода 9 в полихлорвиниловой изоляции, скрученного в спираль для придания ему упругих свойств.

Второй оголённый конец многожильного провода приведите в соприкосновение с боковой поверхностью неодимовых магнитов, висящих на последнем элементе. При этом батарея из последовательно соединённых элементов приходит в быстрое вращение вокруг своей оси (рис. 6, б )!

На зрителей опыт производит сильное впечатление, поскольку, на первый взгляд, отсутствует причина, заставляющая массивную батарею вращаться столь энергично. Вместо двух элементов в опыте можно использовать один, три или четыре последовательно соединённых неодимовыми магнитами гальванических элементов.

В заключение заметим, что нет физических явлений, которые не нашли бы практического применения. Из самых общих соображений вам должно быть ясно, что униполярный электродвигатель может служить и электрогенератором. В производствах, для которых нужны токи силой в сотни тысяч и даже миллионы ампер используют униполярные генераторы, подобные тем машинам, с которыми вы имели дело. Но подробности в следующий раз.

7. Для самостоятельного исследования

1. Магниты и магнитное поле. Какие бывают магниты и как их изготавливают? Что такое остаточная магнитная индукция? Что понимают под коэрцитивной силой? Чему равна магнитная энергия? Ответы на эти и многие другие вопросы вы найдёте на сайте www.valtar.ru/ , где очень интересно и вполне доступно рассказано о современных магнитах и магнитном поле.

2. Неодимовые магниты. Узнать, какие неодимовые магниты имеются в продаже, вы сможете на сайте www.magnitos.ru.

3. Униполярные двигатели. На сайте www.youtube.com/results?search_query=homopolar+motor&search=Search имеется видеоинформация о многочисленных моделях униполярного двигателя, построенных зарубежными учёными-физиками и любителями физики. С этими моделями полезно познакомиться, если вы хотите придумать что-нибудь новенькое.

4. Направления вращения элементов униполярного двигателя. Пользуясь правилом левой руки, определите направления силы Лоренца, действующей на положительные и отрицательные ионы электролита, рис. 3. Определите направление силы Лоренца, действующей на электроны, перемещающиеся в проволочной рамке. Сопоставьте полученные выводы с результатами эксперимента.

5. Сила Ампера. Допустим, что остаточная магнитная индукция вашего неодимового магнита 1,2 Тл, его диаметр 19 мм, сила тока, проходящего по поверхности магнита, 1 А. Оцените модуль силы, приводящей во вращение ротор униполярного двигателя, рис. 6.

До сих пор не решена загадка движения униполярного двигателя Фарадея. Дело в том, что изобретенный им двигатель вращается вопреки физическим законам. Ученые не могут пока преодолеть парадокс движущей силы в его двигателе, в котором функционирует вращающийся магнит-ротор.

Взгляните на фото, как выглядит простой двигатель Фарадея, сделанный из винта, батарейки, провода, и магнитного диска.

Любой человек, знакомый с элементами электротехники, знает, что обычные электродвигатели состоят из неподвижного статора и вращающегося ротора. В качестве статора используются два вида магнитов: постоянный или электромагнит (постоянный или переменный). Как правило в моторах устанавливается переменный электромагнит. Вращение ротора происходит за счет притягивания и отталкивания его от статора, таким образом ротору передается непрерывное движение.

Если ротор притягивается к статору, то и статор притягивается к ротору. Если ротор отталкивается от статора, то и статор отталкивается от ротора. На двигателе Фарадея отсутствует статор. Ротору в этом случае не от чего отталкиваться. В соответствии с известными законами физики двигатель не должен вращаться. А он вращается.

Униполярный двигатель впервые был продемонстрирован Майклом Фарадеем в 1821 году в Королевском институте в Лондоне.

Рассмотрим несколько конструкций двигателей на неодимовых магнитах. На обычных магнитах такой двигатель не работает.

Первая модель одна из наиболее простейших, такой мотор можно сделать за минуту. В качестве ротора используется обыкновенный саморез и соединенный с ним неодимовый магнит. Ток подается непосредственно от одного полюса батарейки и через провод.

Вторая разработка мотора на неодимовых магнитах, создание которого понятно из видео

Третий вариант двигателя на магните. Неодимовые магниты в этом магазине.

Можно и так, не обязательно ставить магниты на батарейку:

Четвертая модель двигателя на неодимовых магнитах на видео, в котором вращается сама батарейка вместе с магнитом.

МАЙКЛ ФАРАДЕЙ (1791-1867)

Английский физик и химик. Майкл Фарадей родился в 1791 году в Ньюингтоне, Англия. Он происходил из бедной семьи и в значительной степени был самоучкой. Посвященный в возрасте четырнадцати лет изучению переплетчика и книготорговца, он использовал эту возможность и много читал. В возрасте двадцати лет он присутствовал на лекциях известного британского ученого сэра Хамфри Дэви, который его очаровал. Он написал Дэви и, наконец, получил работу в качестве помощника.

Несколько лет спустя Фарадей уже делал важные открытия самостоятельно. Ему не хватало хорошей математической основы, но он был непревзойденным как физик-экспериментатор. Первое важное открытие в области электричества, Фарадей сделал в 1821. Два года назад Эрстед обнаружил, что магнитная стрелка отклоняется, когда электрический ток течет через проводник, расположенный близко. Фарадей подумал, что если магнитная стрелка будет прикреплена, шнур будет двигаться. Во время работы над этой идеей ему удалось построить устройство, в котором шнур вращается вокруг магнита, пока электрический ток проходит через кабель. Фактически, Фарадей изобрел первый электродвигатель, первое устройство, которое использует электричество для перемещения объектов. Хотя он очень примитивен, Двигатель Фарадея был прародителем всех электродвигателей, которые в настоящее время используются. Это был огромный прорыв, но его практическое значение оставалось ограниченным, поскольку единственным известным источником электрического тока были примитивные химические батареи. Фарадей был убежден, что должен быть какой-то способ, чтобы использовать магнетизм для генерирования электрического тока, и упорно искал такого метода. Оказалось, что неподвижный магнит не генерирует электрический ток в соседнем проводнике, но в 1831 году Фарадей обнаружил, что если магнит проходит через замкнутую проволочную петлю, ток течет через кабель. Это явление называется электромагнитной индукцией, и открытие закона, регулирующего это явление (закон Фарадея), широко рассматривается как величайшее достижение Фарадея. Открытие Фарадея имело большое значение по двум причинам. Прежде всего, закон Фарадея имеет фундаментальное значение в теории электромагнетизма. Во-вторых, электромагнитная индукция может быть использована для генерации электрического тока, как показал сам Фарадей, построив первый генератор. Современные электрогенераторы, которые обеспечивают электроэнергией наши города и фабрики, конечно, гораздо сложнее, но все они основаны на одном и том же принципе электромагнитной индукции.

Фарадей также внес большой вклад в химию. Он изобрел метод сжижения газов и обнаружил множество различных химических веществ, включая бензол. Еще важнее его открытия в области электрохимии (изучение влияния электрического тока на химические соединения). В результате тщательно проведенных экспериментов Фарадей установил два закона электролиза, которые были названы в его честь. Эти законы составляют основу электрохимии. Он также популяризировал многие важные термины, используемые в этой области, такие как анод, катод, электрод и ион. Фарадей представил такие важные понятия для физики, как линии напряженности магнитного поля и линии напряженности электрического поля. Подчеркивая важность не столько магнитов, сколько полей между ними, он подготовил почву для многих достижений современной физики, в том числе уравнений Максвелла. Фарадей также обнаружил, что изменяется плоскость поляризации света, проходящего через магнитное поле. Это открытие было важно, потому что это был первый сигнал, что есть связь между светом и магнетизмом.

Фарадей был не только очень талантливым человеком, но и очень красивым. Он также был очень хорошим научным пропагандистом. Тем не менее он оставался скромным и не придавал значения славе, деньгам и почестям. Он не принял титул дворянина или позицию председателя Британского королевского общества, которую он предложил. Его брак был долгим и счастливым, но бездетным. Он умер в 1867 году недалеко от Лондона.

Область деятельности(техники), к которой относится описываемое изобретение

Ноу-хау разработки, а именно данное изобретение автора относится к электротехнике, в частности к униполярным двигателям высокого напряжения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известны униполярные двигатели (генераторы)

Недостатком таких двигателей является то, что они работают при низких напряжениях (4 20 В)постоянного тока, вследствие чего для получения значительной мощности необходим большой ток. В связи с этим эти двигатели почти не используют.

Наиболее близким к изобретению по технической сущности и достигаемому результату является униполярный двигатель высокого напряжения Особенностью этого двигателя является то, что ротор выполнен в виде диска, его обмотка в виде радиально расположенных, последовательно соединенных проводников, находящихся в секторовидных участках с сильным и слабым магнитным полем, направление тока в которых (от оси ротора или в ней) обеспечивается коллектором, расположенным вблизи оси ротора. Подвод постоянного тока к коллектору обеспечивается контактными щетками, число которых равно числу секторовидных участков с сильным магнитным полем.

Главным недостатком этого двигателя-прототипа является сложность обмотки ротора, которая должна быть выполнена подобно тому, как она изготавливается в традиционных многополюсных машинах постоянного тока. В мощных двигателях эта обмотка очень трудоемка и нередко изготавливается вручную вследствие своей сложности.

Предлагаемый в вариант изготовления обмотки ротора в виде печатной схемы при сохранении конструктивной сложности упрощает изготовление обмотки, однако, делает двигатель маломощным, что является дополнительным недостатком.

Второй дополнительный недостаток двигателя-прототипа сложная конструкция коллектора, обусловленная сложностью обмотки ротора, изготавливаемого подобно коллекторам в традиционных многополюсных машинах постоянного тока.

Третьим дополнительным недостатком двигателя-прототипа является сложная конфигурация магнитного сердечника обмотки возбуждения, формирующего секторовидные участки с сильным и слабым магнитным полем.

Цель изобретения упрощение конструкции униполярного двигателя высокого напряжения (и устранение перечисленных недостатков) путем упрощения обмотки ротора, конструкции коллектора, конфигурации сердечника обмотки возбуждения и уменьшение числа контактных щеток до двух. Это обеспечивает создание униполярных двигателей высокого напряжения с упрощенной конструкцией, как большой так и малой мощности.

Это достигается тем, что униполярный двигатель (генератор) высокого напряжения, содержащий систему возбуждения статора с одинаковыми секторовидными участками сильного и слабого магнитных полей, установленный на валу двигателя дисковый ротор с обмоткой из радиальных проводников, соединенных последовательно, начало и конец обмотки соединены с коллектором и токоподводящими к нему щетками, отличается тем, что обмотка ротора выполнена таким образом, что проводники с противоположным направлением тока расположены соответственно в сильном и слабом магнитных полях системы возбуждения статора, а коллектор выполнен в виде двух групп пластин, расположенных по кругу, причем, число пластин в каждой группе равно удвоенному числу участков с сильным магнитным полем, пластины в каждой группу электрически соединены друг с другом и с одним из концов обмотки ротора, а расстояние между пластинами на 5 10% больше поперечного размера каждой из двух токоподводящих щеток, что необходимо, чтобы избежать короткого замыкания через щетки в момент переключения на коллекторе.

Униполярный двигатель (генератор) отличается тем, что система возбуждения статора выполнена в виде тороидальной обмотки и цилиндрических сердечников с секторовидными выступами, установленных с двух сторон ротора выступ к выступу.

Сущность изобретения состоит в том, что радиально расположенные и последовательно соединенные проводники, образующие обмотку дискового ротора, находятся в неоднородном магнитном поле в виде секторовидных участков с сильным и слабым магнитными полями. При этом обмотка может быть выполнена из одинаковых секторовидных катушек, токоподвод к коллектору осуществляется с помощью всего двух контактных щеток, а неоднородное магнитное поле создается двумя ферромагнитными сердечниками с секторовидными выступами.

Такой двигатель по конструкции проще двигателя-прототипа и по рабочим характеристикам близок к традиционным многополюсным машинам постоянного тока, но значительно проще их по конструкции.

На фиг.1 изображена схема предлагаемого двигателя в продольном разрезе; на фиг. 2а принципиальная схема обмотки дискового ротора; на фиг. 2б схема конструкции коллектора; на фиг. 3 конструкция одного из двух ферромагнитных сердечников, создающих неоднородное магнитное поле в виде секторовидных областей с сильным и слабым полем.

Предлагаемое устройство (фиг. 1 3) содержит статор 1, тороидальную обмотку 2 возбуждения статора, два ферромагнитных сердечника 3 с секторовидными выступами фиг.3), ротор 4, обмотку 5 ротора, секторовидные области 6 слабого магнитного поля (фиг. 2), секторовидные области 7 7 7 сильного магнитного поля, коллектор 8, пластины 9 коллектора, контактные графитовые щетки 10, ось 11 ротора (вал двигателя).

Хорошо известно, что в соответствии с законом Ампера, сила, действующая на проводник с током в магнитном поле предлагаемого двигателя описывается уравнением (система СИ)

f IBl, (1) где I сила тока; l длина проводника, магнитная индукция.

Действие предлагаемого двигателя (генератора) основано на зависимости от .

Конструкция статора двигателя представлена на фиг. 1. Статор имеет общепринятый для униполярных двигателей вид. Это соленоид 2 в виде тороидальной катушки, на оси которой расположена ось двигателя 11. Внутри соленоида расположены два ферромагнитных сердечника 3. Как указано выше, принципиальная особенность конструкции статора состоит в том, что обмотка возбуждения должна создавать неоднородное магнитное поле, состоящее из секторовидных участков, где магнитная индукция имеет большую величину, и подобных же участков, где она в несколько раз меньше. Форма и расположение этих областей показаны на фиг.2а. Области с малым значением заштрихованы.

Для повышения мощности несколько описанных двигателей можно соединить общим валом с таким расчетом, чтобы переключения на коллекторах двигателей происходили в разные моменты времени, что обеспечит более равномерное вращение.

Предлагаемый двигатель имеет два основных преимущества по сравнению с ранее известными двигателями постоянного тока.

По сравнению со всеми ранее известными униполярными двигателями предлагаемый двигатель может работать при значительно более высоких напряжениях, и при этом двигатель будет иметь больший коэффициент полезного действия вследствие меньших потерь мощности на щетках, вследствие их меньшего количества. Двиатель будет иметь также очень широкий диапазон скоростей вращения. Изменение скорости вращения осуществляется так же, как в традиционных двигателях постоянного тока, а именно изменением величины в области с сильным магнитным полем посредством вариации тока в обмотке 2 возбуждения (фиг. 1). За счет большого значения N двигатель может быть низкооборотным, что дает возможность использовать двигатель без механического редуктора.

По сравнению с ранее известными коллекторными двигателями постоянного тока большим достоинством предлагаемого двигателя является простота обмоток возбуждения и ротора. Обмотка возбуждения состоит всего из одной тороидальной катушки. Обмотка ротора может состоять из 4 8 одинаковых секторовидных катушек. Проволока на эти катушки может наматываться на очень простых устройствах (например, на токарном станке), поэтому изготовление наиболее трудоемкой части двигателя постоянного тока (обмотки, которую часто делают вручную) значительно упрощается.

Очень важным дополнительным достоинством предлагаемого двигателя является очень простая конструкция коллектора.

Предлагаемый двигатель большой мощности может быть использован для привода на электрическом транспорте (трамваях, троллейбусах, электровозах, электромобилях, дизель-электроходах). Двигатель может быть применен для привода разнообразных маломощных устройств: магнитофонов, холодильников, стиральных машин и т. п.

Экономический эффект от использования предлагаемого двигателя будет значительным, но количественного его в настоящее время оценить трудно.

Формула изобретения

1. Униполярный двигатель (генератор) высокого напряжения, содержащий систему возбуждения статора с одинаковыми секторовидными участками сильного и слабого магнитных полей, установленный на валу дисковый ротор с обмоткой из радиальных проводников, соединенных последовательно, начало и конец обмотки соединены с коллектором и токоподводящими к нему щетками, отличающийся тем, что обмотка выполнена таким образом, что проводники с противоположным направлением тока расположены соответственно в сильном и слабом магнитных полях системы возбуждения статора, а коллектор выполнен в виде двух групп пластин, расположенных по кругу, причем число пластин в каждой группе равно удвоенному числу участков с сильным магнитным полем, пластины в каждой группе электрически соединены друг с другом и с одним из концов обмотки ротора, а расстояние между пластинами на 5 10% больше поперечного размера каждой из двух токоподводящих щеток.

2. Двигатель по п. 1, отличающийся тем, что система возбуждения статора выполнена в виде тороидальной обмотки и цилиндрических ферромагнитных сердечников с секторовидными выступами, установленных с двух сторон ротора выступ к выступу.

Имя изобретателя:
Имя патентообладателя: Цивинский Станислав Викторович
Дата начала отсчета действия патента: 1993.11.23

Использование: в качестве привода на электрическом транспорте, а также других маломощных устройств, стиральных машин, холодильников и т. д. Сущность изобретения: статор выполнен в виде тороидального соленоида 2, внутри которого расположены два ферромагнитных сердечника 3. По их окружности выполнены чередующиеся секторовидные области с сильно отличающимися значениями индукции. Радиальные проводники 5 ротора соединены последовательно. Две группы проводников, в которых ток течет в противоположных направлениях располагаются в области с сильно отличающимися значениями индукции. Сила, действующая на проводники 5, в областях с большей индукцией значительно больше и при этом возникает крутящий момент. При вращении проводники 5 с противоположным направлением тока в обмотке ротора входят в область статора с большим значением индукции. Чтобы вращение продолжалось, направление тока в обмотке ротора изменяется на противоположное с помощью коллектора. 1 з. п. ф-лы, 3 ил.

Изобретение относится к электротехнике, в частности к униполярным двигателям высокого напряжения. Известны униполярные двигатели (генераторы) Недостатком таких двигателей является то, что они работают при низких напряжениях (4 20 В)постоянного тока, вследствие чего для получения значительной мощности необходим большой ток. В связи с этим эти двигатели почти не используют. Наиболее близким к изобретению по технической сущности и достигаемому результату является униполярный двигатель высокого напряжения Особенностью этого двигателя является то, что ротор выполнен в виде диска, его обмотка в виде радиально расположенных, последовательно соединенных проводников, находящихся в секторовидных участках с сильным и слабым магнитным полем, направление тока в которых (от оси ротора или в ней) обеспечивается коллектором, расположенным вблизи оси ротора. Подвод постоянного тока к коллектору обеспечивается контактными щетками, число которых равно числу секторовидных участков с сильным магнитным полем. Главным недостатком этого двигателя-прототипа является сложность обмотки ротора, которая должна быть выполнена подобно тому, как она изготавливается в традиционных многополюсных машинах постоянного тока. В мощных двигателях эта обмотка очень трудоемка и нередко изготавливается вручную вследствие своей сложности. Предлагаемый в вариант изготовления обмотки ротора в виде печатной схемы при сохранении конструктивной сложности упрощает изготовление обмотки, однако, делает двигатель маломощным, что является дополнительным недостатком. Второй дополнительный недостаток двигателя-прототипа сложная конструкция коллектора, обусловленная сложностью обмотки ротора, изготавливаемого подобно коллекторам в традиционных многополюсных машинах постоянного тока. Третьим дополнительным недостатком двигателя-прототипа является сложная конфигурация магнитного сердечника обмотки возбуждения, формирующего секторовидные участки с сильным и слабым магнитным полем. Цель изобретения упрощение конструкции униполярного двигателя высокого напряжения (и устранение перечисленных недостатков) путем упрощения обмотки ротора, конструкции коллектора, конфигурации сердечника обмотки возбуждения и уменьшение числа контактных щеток до двух. Это обеспечивает создание униполярных двигателей высокого напряжения с упрощенной конструкцией, как большой так и малой мощности. Это достигается тем, что униполярный двигатель (генератор) высокого напряжения, содержащий систему возбуждения статора с одинаковыми секторовидными участками сильного и слабого магнитных полей, установленный на валу двигателя дисковый ротор с обмоткой из радиальных проводников, соединенных последовательно, начало и конец обмотки соединены с коллектором и токоподводящими к нему щетками, отличается тем, что обмотка ротора выполнена таким образом, что проводники с противоположным направлением тока расположены соответственно в сильном и слабом магнитных полях системы возбуждения статора, а коллектор выполнен в виде двух групп пластин, расположенных по кругу, причем, число пластин в каждой группе равно удвоенному числу участков с сильным магнитным полем, пластины в каждой группу электрически соединены друг с другом и с одним из концов обмотки ротора, а расстояние между пластинами на 5 10% больше поперечного размера каждой из двух токоподводящих щеток, что необходимо, чтобы избежать короткого замыкания через щетки в момент переключения на коллекторе. Униполярный двигатель (генератор) отличается тем, что система возбуждения статора выполнена в виде тороидальной обмотки и цилиндрических сердечников с секторовидными выступами, установленных с двух сторон ротора выступ к выступу. Сущность изобретения состоит в том, что радиально расположенные и последовательно соединенные проводники, образующие обмотку дискового ротора, находятся в неоднородном магнитном поле в виде секторовидных участков с сильным и слабым магнитными полями. При этом обмотка может быть выполнена из одинаковых секторовидных катушек, токоподвод к коллектору осуществляется с помощью всего двух контактных щеток, а неоднородное магнитное поле создается двумя ферромагнитными сердечниками с секторовидными выступами. Такой двигатель по конструкции проще двигателя-прототипа и по рабочим характеристикам близок к традиционным многополюсным машинам постоянного тока, но значительно проще их по конструкции. На фиг.1 изображена схема предлагаемого двигателя в продольном разрезе; на фиг. 2а принципиальная схема обмотки дискового ротора; на фиг. 2б схема конструкции коллектора; на фиг. 3 конструкция одного из двух ферромагнитных сердечников, создающих неоднородное магнитное поле в виде секторовидных областей с сильным и слабым полем. Предлагаемое устройство (фиг. 1 3) содержит статор 1, тороидальную обмотку 2 возбуждения статора, два ферромагнитных сердечника 3 с секторовидными выступами фиг.3), ротор 4, обмотку 5 ротора, секторовидные области 6 слабого магнитного поля (фиг. 2), секторовидные области 7 7 7 сильного магнитного поля, коллектор 8, пластины 9 коллектора, контактные графитовые щетки 10, ось 11 ротора (вал двигателя). Хорошо известно, что в соответствии с законом Ампера, сила, действующая на проводник с током в магнитном поле предлагаемого двигателя описывается уравнением (система СИ) f IBl, (1) где I сила тока; l длина проводника, магнитная индукция. Действие предлагаемого двигателя (генератора) основано на зависимости от . Конструкция статора двигателя представлена на фиг. 1. Статор имеет общепринятый для униполярных двигателей вид. Это соленоид 2 в виде тороидальной катушки, на оси которой расположена ось двигателя 11. Внутри соленоида расположены два ферромагнитных сердечника 3. Как указано выше, принципиальная особенность конструкции статора состоит в том, что обмотка возбуждения должна создавать неоднородное магнитное поле, состоящее из секторовидных участков, где магнитная индукция имеет большую величину, и подобных же участков, где она в несколько раз меньше. Форма и расположение этих областей показаны на фиг.2а. Области с малым значением заштрихованы. Конструкция ротора приведена на фиг. 1 и 2а. Радиально расположенные проводники с током 5 соединены последовательно, так как показано на фиг. 2а. Две группы проводников, в которых ток течет в противоположных направлениях (к оси ротора или от нее), располагаются в участках с сильно отличающимися значениями индукции . Сила, действующая на проводники, расположенные в участках с большим , окажется значительно больше и возникает крутящий момент. При вращении проводники второй группы с противоположным направлением тока начнут входить в участки с большим значением . Чтобы вращение двигателя продолжалось, необходимо направление тока в обмотке ротора изменить на противоположное, что достигается с помощью простого коллектора 6, устройство которого показано на фиг. 2б. Коллектор состоит из двух групп пластин, расположенных по кругу и соединенных друг с другом. Каждая из групп соединена с концом обмотки 5 ротора. Число пластин коллектора невелико и равно удвоенному числу n участков с высоким значением . Минимальное значение n= 2. Для работы коллектора достаточно двух щеток 12 (фиг. 1). Расстояние между пластинами на 5 -10% больше поперечного размера каждой из двух токопроводящих щеток 10. Расположение участков с большим и малым значением В (фиг. 2а) можно создать несколькими путями. Самый простой вариант можно реализовать при использовании тороидальной обмотки 2 возбуждения (фиг. 1), когда для создания значительного магнитного поля применяют ферромагнитные сердечники. Конструкция таких сердечников показана на фиг.3: по окружности расположены секторовидные выступы 13, 15, 17 и 19 и впадины 14, 16, 18 и 20. Ротор 4 (фиг. 1) находится между двумя сердечниками 3, расположенными выступ к выступу. Благодаря малому зазору между выступами магнитное поле в этих областях имеет высокое значение . Между впадинами значение значительно меньше. В качестве выступов на ферромагнитных сердечниках 3 можно также использовать постоянные магниты с секторовидными полюсами. При этом отпадает необходимость в тороидальной обмотке 2 возбуждения (фиг. 1). Вместо постоянных магнитов можно использовать также секторовидные соленоиды. Как видно из фиг. 2, при одновременном изменении направления тока в обмотке возбуждения (т.е. изменения направления магнитного поля на противоположное) и в роторе двигателя направление крутящего момента не изменится. Поэтому принципиально, предлагаемый двигатель может работать и на переменном токе. Если рабочее напряжение традиционного униполярного двигателя V o , то при той же скорости вращения и индукции магнитного поля напряжение будет V V o nN, (2) где n число областей с высоким значением , т.е. число участков с токами одного направления, N число проводников в одном таком участке. Число проводников в обмотке ротора (фиг. 2а) является минимально необходимым для работы двигателя элементарная обмотка. Это число может быть увеличено во много раз путем многократной укладки элементарных обмоток и их последовательного соединения. В частности, это можно осуществить путем последовательного соединения секторовидных катушек. При этом величина N окажется очень значительной. Так как N может быть значительным, рабочие напряжения двигателя (генератора) будут большими и, в частности, более высокими, чем в двигателе-прототипе В результате удельная мощность двигателя существенно повысится. При вращении ротора внешним двигателем предлагаемое устройство, как и другие двигатели постоянного тока, будет работать как генератор постоянного тока. Для повышения мощности несколько описанных двигателей можно соединить общим валом с таким расчетом, чтобы переключения на коллекторах двигателей происходили в разные моменты времени, что обеспечит более равномерное вращение. Предлагаемый двигатель имеет два основных преимущества по сравнению с ранее известными двигателями постоянного тока. По сравнению со всеми ранее известными униполярными двигателями предлагаемый двигатель может работать при значительно более высоких напряжениях, и при этом двигатель будет иметь больший коэффициент полезного действия вследствие меньших потерь мощности на щетках, вследствие их меньшего количества. Двиатель будет иметь также очень широкий диапазон скоростей вращения. Изменение скорости вращения осуществляется так же, как в традиционных двигателях постоянного тока, а именно изменением величины в области с сильным магнитным полем посредством вариации тока в обмотке 2 возбуждения (фиг. 1). За счет большого значения N двигатель может быть низкооборотным, что дает возможность использовать двигатель без механического редуктора. По сравнению с ранее известными коллекторными двигателями постоянного тока большим достоинством предлагаемого двигателя является простота обмоток возбуждения и ротора. Обмотка возбуждения состоит всего из одной тороидальной катушки. Обмотка ротора может состоять из 4 8 одинаковых секторовидных катушек. Проволока на эти катушки может наматываться на очень простых устройствах (например, на токарном станке), поэтому изготовление наиболее трудоемкой части двигателя постоянного тока (обмотки, которую часто делают вручную) значительно упрощается. Очень важным дополнительным достоинством предлагаемого двигателя является очень простая конструкция коллектора. Предлагаемый двигатель большой мощности может быть использован для привода на электрическом транспорте (трамваях, троллейбусах, электровозах, электромобилях, дизель-электроходах). Двигатель может быть применен для привода разнообразных маломощных устройств: магнитофонов, холодильников, стиральных машин и т. п. Экономический эффект от использования предлагаемого двигателя будет значительным, но количественного его в настоящее время оценить трудно.