Принцип работы тепловой машины. КПД системы. Тепловые двигатели - наука и образование

Тепловой двигатель – устройство, преобразующее внутреннюю энергию сгоревшего топлива в механическую энергию. Виды тепловых двигателей : 1) двигатели внутреннего сгорания: а) дизельные, б) карбюраторные; 2) паровые двигатели; 3) турбины: а) газовые, б) паровые.

Все названые тепловые двигатели имеют разную конструкцию, но состоят из трех основных частей : нагревателя, рабочего тела и холодильника. Нагреватель обеспечивает поступление теплоты в двигатель. Рабочее тело превращает часть полученной теплоты в механическую работу. Холодильник забирает от рабочего тела часть теплоты.

T 1 – температура нагревателя;

T 2 –температура холодильника;

Q 1 – теплота, полученная

от нагревателя;

Q 2 – теплота, отданная

холодильнику;

A" – работа, выполненная

двигателем.

Работа любого теплового двигателя состоит из повторяющихся циклических процессов – циклов. Цикл – это такая последовательность термодинамических процессов, в результате которых система возвращается в начальное состояние.

Коэффициент полезного действия (КПД) тепловой машины – это отношение совершенной двигателем работы к количеству теплоты, полученному от нагревателя: .

Французский инженер Сади Карно рассмотрел идеальную тепловую машину с идеальным газом в качестве рабочего тела. Он нашел оптимальный идеальный цикл теплового двигателя, состоящий из двух изотермических и двух адиабатических обратимых процессов – цикл Карно . КПД такой тепловой машины с нагревателем при температуре и холодильником при температуре : . Независимо от конструкции, выбора рабочего тела и типа процессов в тепловом двигателе его КПД не может быть больше КПД теплового двигателя, работающего по циклу Карно, и имеющего те же, что и у данного теплового двигателя, температуру нагревателя и холодильника.

КПД тепловых двигателей невысок, поэтому важнейшей технической задачей является его повышение. Тепловые двигатели имеют два существенных недостатка. Во-первых, в большинстве тепловых двигателей используется органическое топливо, добыча которого быстро истощает ресурсы планеты. Во-вторых, в результате сгорания топлива в окружающую среду выбрасывается огромное количество вредных веществ, что создает значительные экологические проблемы.

С изучением вопроса о максимальном КПД тепловых машин связано открытие в 1850 г. немецким физиком Р. Клазиусом второго начала термодинамики : невозможен такой процесс, при котором теплота самопроизвольно переходила бы от более холодных тел к более горячим телам.

Физические величины и их единицы измерения:

Наименование величина Обозначение Единица измерения Формула
Относительная молекулярная масса M r (эм эр) безразмерная величина
Масса одной молекулы (атома) m 0 кг
Масса m кг
Молярная масса M
Количество вещества ν (ню) моль (моль) ;
Число частиц N (эн) безразмерная величина
Давление p (пэ) Па (паскаль)
Концентрация n (эн)
Объём V (вэ)
Средняя кинетическая энергия поступательного движения молекулы Дж (джоуль)
Температура по шкале Цельсия t °C
Температура по шкале Кельвина T К (кельвин)
Средняя квадратичная скорость молекул
Поверхностное натяжение σ (сигма)
Абсолютная влажность ρ (ро)
Относительная влажность φ (фи) %
Внутренняя энергия U (у) Дж (джоуль)
Работа А (а) Дж (джоуль)
Количество теплоты Q (ку) Дж (джоуль)

Машины, в которых внутренняя энергия топлива превращается в механическую, называются тепловыми двигателями. К ним относятся: двигатели внутреннего сгорания, паровая и газовая турбины, реактивные двигатели. Выясним, какие необходимы условия для того, чтобы в тепловом двигателе внутренняя энергия топлива превращалась в механическую энергию рабочего вала двигателя.

Вещество, которое совершает работу в тепловом двигателе, называется рабочим телом. В паровых двигателях таковым является пар, а в двигателе внутреннего сгорания, реактивном двигателе и в газовой турбине - газ. Как показывает теория тепловых двигателей, чтобы рабочее тело непрерывно совершало в них работу, необходимо наличие в двигателе нагревателя и холодильника. Устройство, в котором рабочее тело нагревается за счет энергии топлива, называется нагревателем (паровой котел, цилиндр). Устройство, в котором рабочее тело после совершения работы охлаждается, называется холодильником (атмосфера, конденсатор, в котором отработавший пар охлаждается проточной водой и превращается в воду).

Проделаем следующий опыт (рис. 30). Возьмем U-образную трубку с водой. Одно колено трубки соединено с теплоприемником (в котором находится рабочее тело - газ), в другом колене имеется поплавок А. Попеременно теплоприемник будем нагревать спиртовкой и опускать в холодную воду. Спиртовка выполняет роль нагревателя рабочего тела, холодная вода - роль холодильника. Работа такой модели теплового двигателя заключается в повторяющемся процессе - поднятии и опускании воды вместе с поплавком. Это происходит так: рабочее тело (газ), нагреваясь в нагревателе и расширяясь, совершает работу по поднятию воды с поплавком; для того чтобы рабочее тело снова могло совершить работу, его охлаждают в холодильнике, а затем опять нагревают. Пока этот процесс будет повторяться - модель такого двигателя будет действовать.

Тепловой двигатель работает непрерывно. Так происходит, потому, что в нем процессы, происходящие с рабочим телом, периодически повторяются: оно нагревается, расширяясь, совершает работу, охлаждается, снова нагревается и т. д. (Проследите это в работе двигателя внутреннего сгорания. Значит, для работы теплового двигателя необходимо иметь: нагреватель, рабочее тело и холодильник.

Для периодически повторяющихся процессов был открыт закон, по которому невозможно осуществить такой периодически повторяющийся процесс, единственным и конечным результатом которого было бы полное превращение количества теплоты, полученного от нагревателя, в работу. Применительно к тепловому двигателю это означает: количество теплоты, полученное рабочим телом от нагревателя, не может быть полностью использовано для совершения работы, так как невозможен процесс полного перехода внутренней энергии беспорядочного движения большого числа молекул в механическую энергию движения тела (поршня двигателя, рабочего колеса турбины).

Чтобы в реальных тепловых двигателях рабочее тело снова и снова совершало работу, отработавшую порцию рабочего тела удаляют из двигателя в холодильник, т. е. в атмосферу, или в конденсатор для подогрева воды, или для отопления (рис. 31). При этом, чтобы на удаление была совершена как можно меньшая работа, в холодильнике температура и давление всегда меньше, чем в рабочей камере двигателя. Благодаря разнице работы пара и работы по его удалению двигатель и совершает полезную работу. С энергетической точки зрения процесс, происходящий в тепловых двигателях, сводится к следующему (рис. 32): рабочее тело получает от нагревателя количество теплоты Q н , часть которого отдает холодильнику Q x , а за счет оставшейся части совершает работу А = Q н - Q x .

Многообразно применение тепловых двигателей. Карбюраторные двигатели, например, применяются в автомобилях, мотоциклах; дизели - в тракторах, автомобилях большой грузоподъемности, тепловозах, теплоходах, морских судах; паровые турбины - на электростанциях; газовые турбины - на электростанциях, газотурбовозах, в доменных печах для приведения в действие воздуходувок, являются частью одного из типов реактивного двигателя; реактивные двигатели - в авиации, в ракетах.

Галина Денисенко 06.02.2016 11:31

Если gm это тепло, переданное нагревателем тепловой машины, то работа будет вычисляться как РАЗНОСТЬ, а не СУММА gm и Q холодильника. Просьба проверить правильный вариант ответа и заменить "4" на "3". Спасибо, с уважением Денисенко Г.Б. учитель физики.

Антон

Условие задачи некорректно. Указано, что , поэтому его приходится прибавлять.

Гость 03.03.2016 19:29

Доброго времени суток!

Считаю, что условие данной задачи некорректным по следующим основаниям.

В условии задачи сказано, что "ра­бо­чее тело ма­ши­ны пе­ре­да­ло

хо­ло­диль­ни­ку ко­ли­че­ство теп­ло­ты Qхол < 0". Но если Qхол - это

количество теплоты, переданной от рабочего тела холодильнику, то знак

Qхол > 0 - означает направление потока тепла - от холодильника к

нагревателю, а знак же (как в условии задачи) Qхол < 0 - означает, что

поток тепла направлен от холодильника к нагревателю (!), что

противоречит Второму закону (началу) термодинамики!

Традиционно, Qхол - количество теплоты, переданной рабочим телом

машины холодильнику, - величина большая нуля (положительная), что

отражает соответствие законам термодинамики.

Формула для к.п.д. тепловой машины в виде n = (Q1+Q2)/Q1 (со знаком

"+" между Q1 и Q2) содержатся в некоторой учебной и справочной

литературе, но в это случае считают, что Q1 - это количество теплоты,

полученной рабочим тело за от нагревателя, а Q2 - это количество

теплоты, ПОЛУЧЕННОЙ рабочим телом от холодильника, при этом Q2 < 0 ,

и это означает, что рабочее тело передаёт холодильнику количество

теплоты -Q2 (со знаком "минус"). Смотрите, например: Яворский Б.М. и

Детлаф А.А. Справочник по физике: 2-е изд., перераб. - М., Главная

редакция физико-математической литературы, 1985, - стр.119, пункт 7.

С учетом изложенного, считаю, что условие данной задачи и её решение

должны быть переработаны (исправлены) соответствующим образом.

С другой стороны, и сама постановка

с выбором "правильных" формул глуповатая, даже если исправить знак в неравенстве.

С уважением, Ершов Александр Петрович, док. физ.-мат. наук, профессор, Заведующий лабораторией Физики взрыва

Института гидродинамики им. М.А. Лаврентьева

Сибирского отделения Российской академии наук

http://www.hydro.nsc.ru/structure/persons/index.php?id=68

Гость 05.03.2016 16:41

Уважаемый редактор! В термодинамике есть правило: если за Q принимается количество теплоты, отданное телом, то Q>0 - означает, что поток тепла направлен от тела к другому(им) телу(ам) (тело теряет тепло в количестве Q), а Q<0 при этом означает, что поток тепла направлен к телу (тело получает тепло в количестве |Q|). Поэтому, условие Qхол<0 означает, что рабочее тело фактически не передало, а получило от холодильника количество теплоты |Qхол|, а это - абсурд. Пожалуйста, верно расставляйте акценты в оценке данного обстоятельства: это не просто некорректность условия задачи, а явная ошибка составителей данной задачи, показывающая их достаточно низкий уровень. Всего Вам доброго и успехов в Ваших начинаниях.

Условия, необходимые для работы теплового двигателя

Тепловым двигателем называется машина, в которой происходит превращение энергии, полученной при сгорании топлива, в механическую энергию.

Вещество, производящее работу в тепловых двигателях, называется рабочим телом или рабочим веществом . В паровых двигателях таким рабочим веществом является пар, а в двигателях внутреннего сгорания – газ.

Установим общие условия (относящиеся ко всем тепловым двигателям), которые необходимы, чтобы преобразовать энергию топлива в энергию движения машин и механизмов. Эти условия мы выясним на примере работы паросиловой установки, схема которой изображена на рисунке.

Одна из частей паросиловой установки – топка с паровым котлом С. В котле образуется пар, который под давлением направляется по трубе М в цилиндр паровой машины Е. Здесь пар расширяется и, двигая поршень, совершает работу. Посредством передающего механизма А возвратно-поступательное движение поршня преобразуется во вращательное движение маховика, который приводит в движение рабочие части станков, сельскохозяйственных машин, генераторов тока и т. д.

Реактивные двигатели

Развитие авиации сводится в основном к увеличению скорости, высоты, грузоподъёмности, дальности, надёжности полёта самолётов, что в значительной степени зависит от возможностей совершенствования двигателя.

Двигатели внутреннего сгорания с винтами-пропеллерами уже не обеспечивают увеличения скорости и высоты полёта самолётов. Причина этого заключается в следующем.

В самолёте с воздушным винтом последний, вращаясь, отбрасывает воздух, заставляя его двигаться ускоренно. По третьему закону Ньютона , отбрасываемая масса воздуха действует на винт, толкает его вперёд, создавая этим тягу, движущую весь самолёт. Тяга получается, таким образом, как результат ответного воздействия (реакции) воздуха, отбрасываемого винтом. Винт служит посредником, который за счёт энергии топлива совершает работу по передвижению самолёта.

Коэффициент полезного действия тепловых двигателей

При устройстве тепловых двигателей важно прежде всего добиться, чтобы как можно большее количество энергии сгораемого топлива превратилось в механическую энергию, иначе говоря, при минимальной затрате топлива получилась максимальная работа. Тогда двигатель будет экономичным. Зная количество теплоты Q 1 , переданное рабочему телу от нагревателя, и количество теплоты Q 1 – Q 2 , превращенное в механическую энергию, можно оценить степень экономичности этого процесса превращения.

Отношение количества теплоты, превращенной машиной о механическую энергию, к количеству теплоты, полученной от нагревателя, называется коэффициентом полезного действия тепловой машины (к. п. д.).

К. п. д. машины принято обозначать буквой η (греч. «эта»):

η = (Q 1 – Q 2) : Q 1

Изучая условия получения работе за счёт внутренней энергии пара в паровых машинах, Карнов 1824 г. установил, что коэффициент полезного действия любого реального теплового двигателя не может превышать величины (Т 1 – Т 2) : T 1 , где Т 1 – абсолютная температура нагреватели, а Т 2 – абсолютная температура холодильника. Чем ближе к. п. д. двигателя к этой величине, тем двигатель совершеннее. Этот вывод хорошо оправдывается на практике.

Работа при расширении газа

Представим себе, что в цилиндре под поршнем, площадь которого S, находится какой-нибудь газ, давление которого равно р. Сила, с которой газ давит на поршень, определяется по формуле F = pS. Если нагревать газ при постоянном давлении, то он расширится и поршень переместится на некоторое расстояние h.

Газ при этом совершит работу А = pSh. Но Sh = V 2 – V 1 есть увеличение объёма газа, следовательно:

A = p · (V 2 – V 1)

Работа газа при изобарном расширении равна произведению давления газа на увеличение его объёма.

Дизельный двигатель

От чего зависит коэффициент полезного действия двигателя внутреннего сгорания? Как и во всякой тепловой машине, в этом двигателе имеется источник энергии – нагреватель (таким источником является сгорающее топливо) и холодильник – атмосферный воздух. Чем выше разность температур между ними, тем выше к. п. д. двигателя.

Так как температура газов, получающихся при сгорании смеси, велика (порядка 1600–1800 о С), то к. п. д. двигателей внутреннего сгорания значительно выше к. п. д. паровых машин. На практике к. п. д. двигателей внутреннего сгорания достигает 20–30%.

Как можно ещё повысить к. п. д. этого двигателя? Опыт и расчёты показывают, что для этого нужно добиться большей степени сжатия смеси. Однако в двигателях карбюраторного типа очень сильно сжимать горючую смесь нельзя, так как она, сильно нагреваясь, будет преждевременно самовоспламенятся.

Немецкий инженер Дизель изобрёл двигатель, названный его именем, работающий по такому циклу, который позволяет избежать указанных выше затруднений и значительно повысить к. п. д.

Паровые турбины

Среди тепловых двигателей важное место занимают паровые турбины. В отличие от поршневых паровых двигателей в паровых турбинах используется не энергия упругости пара, а кинетическая энергия струн пара.

Предположим, что давление пара в котле равно р 1 . Предоставим пару возможность свободно вытекать из котла через какое-либо отверстие или через насадку – сопло. При истечении через сопло давление пара будет падать, и в устье сопла оно окажется равным некоторому давлению р 2 . Вначале скорость пара равна нулю, при выходе же из сопла она увеличивается; при этом давление пара в сопле падает.

Потенциальная энергия пара при падении его давления уменьшается; соответственно увеличивается кинетическая энергия пара (по закону сохранения и превращения энергии). Вытекающий из сопла пар попадает на лопатки рабочего колеса и приводит его во вращение.

Схема действия одного из типов турбин представлена на рисунке. На валу А насажен диск В, по ободу которого закреплены лопатки L. Против лопаток расположены сопла С, в которые пар поступает из котла. В соплах пар расширяется и, выходя из их устьев с большой скоростью, попадает в каналы, образуемые лопатками, где теряет часть своей кинетической энергии, которая идёт на приведение диска В вместе с валом во вращательное движение. Па рисунке изображено колесо однодисковой турбины Лаваля (без кожуха).

Двигатель внутреннего сгорания

В паровых машинах и паровых турбинах для преобразования энергии топлива в механическую энергию используют водяной пар, который получается в паровых котлах. Наряду с этим существуют тепловые двигатели, в цилиндрах которых одновременно протекают процессы сгорания топлива, выделения при этом энергии и совершения за счёт части её механической работы; такие двигатели называются двигателями внутреннего сгорания . В этих двигателях используется жидкое или газообразное топливо. Жидкое топливо перед сжиганием испаряется или распыляется в воздухе.

Рассмотрим устройство четырёхтактного карбюраторного автомобильного двигателя. Принцип действия двигателей, применяемых на тракторах и самолётах, сходен с автомобильным.

Схема четырёхтактного двигателя внутреннего сгорания и диаграмма работы такого двигателя изображены на рисунке.

Из схемы видно, что внутри цилиндра А может свободно перемещаться поршень В. В верхней части цилиндра имеются два клапана. Через клапан Д производится впуск так называемой горючей смеси, состоящей из воздуха и мельчайших частиц жидкого или газообразного топлива. Клапан Е служит для удаления из цилиндра отработавших газов; С – запальник (свеча), назначение которого – воспламенять находящуюся над поршнем смесь.

Паровые котлы

Одна и основных частей паросиловой установки – котёл. Каждый паровой котел состоит из топки для сжигания топлива, топочного пространства, барабана котла с водяным и паровым пространством, герметически закрытым. Всякий котёл обладает определенной производительностью, измеряемой количеством воды, которую он способен испарить в течение часа при определенных температуре и давлении. Часть котла, которая во время топки приходит в соприкосновение с пламенем, называется поверхностью нагрева .

На рисунке изображен дымогарный котёл. Внутри этого котла помещён ряд трубок А, по которым продукты горения проходят в дымовую коробку В, откуда попадают в дымовую трубу. Такие котлы устанавливают на локомобилях и на паровозах. Многочисленные дымогарные трубки дают огромную поверхность нагрева, с помощью которой в большей степени полезно используется энергия, получающаяся при сгорании топлива. Вода в этих котлах находится между дымогарными трубками.

Можно сделать котлы иначе: по трубкам пустить воду, а между трубками пламя. Такие котлы называются водотрубными .

Виды реактивных двигателей

Все разнообразные виды реактивных двигателей состоят из следующих основных частей: 1) бака с топливом, 2) камеры, где это топливо сгорает, 3) устройств, обеспечивающих подачу топлива в камеру сгорания и истечение продуктов сгорания. В зависимости от вида используемого топлива реактивные двигатели разделяются на две большие группы: двигатели на твёрдом топливе, двигатели на жидком топливе.

Простейшим примером двигателя на твёрдом топливе служит пороховая ракета. В ракете при сгорании пороха образуются газы, которые выбрасываются из тела ракеты, создавая реактивную тягу.

В жидкостных реактивных двигателях (ЖРД) сгорают жидкие горючие вещества (нефтепродукты, спирт и т. д.). Жидкостные реактивные двигатели применялись в конце второй мировой войны для самолётов–снарядов дальнего действия. Скорость самолётов-снарядов достигала 5400 км/ч при дальности полёта 290-300 км и высоте траектории 100 км.

К этому же роду двигателей относится ракетный двигатель для межпланетных сообщений, изобретённый К. Э. Циолковским.

Паровая машина

В паровой машине энергия пара непосредственно преобразуется в энергию движения поршня.

На рисунке изображена схема устройства одноцилиндровой паровой машины. Пар из парового котла по трубе А поступает в парораспределительную коробку В, а оттуда в рабочий цилиндр С – попеременно то с одной, то с другой стороны поршня. Распределение пара производится с помощью золотника Z.

Когда пар поступает в правую часть цилиндра, то он толкает поршень влево, а отработавший пар вытесняется и выходит через выводную трубу (на рисунке эта труба не показана). Затем, наоборот, пар поступает в левую часть цилиндра и толкает поршень вправо.

При помощи штока Е, шатуна F и кривошипа К возвратно-поступательное движение поршня превращается во вращательное движение вала машины и махового колеса. В свою очередь маховое колесо через передающий механизм L и М перемещает золотник, который поочерёдно впускает пар то с правой, то с левой стороны поршня.

«Физика - 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели - устройства, способные совершать работу. Большая часть двигателей на Земле - это тепловые двигатели .

Тепловые двигатели - это устройства, превращающие внутреннюю энергию топлива в механическую работу.


Принцип действия тепловых двигателей.


Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя - сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .


Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара - конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А" и передаёт холодильнику количество теплоты Q 2 < Q 1 .

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т 1 . Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл - это ряд процессов, в результате которых система возвращается в начальное состояние.


Коэффициент полезного действия (КПД) теплового двигателя.


Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А" = Q 1 - |Q 2 | , (13.15)

где Q 1 - количество теплоты, полученной от нагревателя, a Q2 - количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А", совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η < 1.


Максимальное значение КПД тепловых двигателей.


Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т 1 , при этом он получает количество теплоты Q 1 .

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т 2 . После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q 2 , сжимаясь до объёма V 4 < V 1 . Затем сосуд снова теплоизолируют, газ сжимается адиабатно до объёма V 1 и возвращается в первоначальное состояние. Для КПД этой машины было получено следующее выражение:

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 - 800 К и Т 2 - 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД - около 44% - имеют двигатели Дизеля.


Охрана окружающей среды.


Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.