Двигатель внешнего сгорания принцип. Двигатель внутреннего сгорания - история создания. Роторный двигатель внешнего сгорания

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

Двигатель внешнего сгорания

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления - в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой - расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой - высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз - возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор - полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.

Несмотря на свои высокие показатели, современный двигатель внутреннего сгорания начинает устаревать. Его к. п. д. достиг, пожалуй, своего предела. Шум, вибрация, отравляющие воздух газы и другие присущие ему недостатки заставляют ученых искать новые решения, пересматривать возможности давно «забытых» циклов. Одним из «возрожденных» двигателей является стирлинг.

Еще в 1816 г. шотландский священник и ученый Роберт Стирлинг запатентовал двигатель, в котором топливо и воздух, поступающие в зону горения, никогда не попадают внутрь цилиндра. Они, сгорая, лишь нагревают находящийся в нем рабочий газ. Это и дало основание назвать изобретение Стирлинга двигателем внешнего сгорания.

Роберт Стирлинг построил несколько двигателей; последний из них имел мощность 45 л. с. и проработал на шахте в Англии более трех лет (до 1847 г.). Эти двигатели были очень тяжелыми, занимали много места и внешне напоминали паровые машины.

Для мореплавания двигатели внешнего сгорания впервые были применены в 1851 г. шведом Джоном Эриксоном. Построенное им судно «Эриксон» благополучно пересекло Атлантический океан из Америки в Англию с силовой установкой, состоявшей из четырех двигателей внешнего сгорания. В век паровых машин это было сенсацией. Однако силовая установка Эриксона развивала всего 300 л. с., а не 1000, как ожидалось. Двигатели имели огромные размеры (диаметр цилиндра 4,2 м, ход поршня 1,8 м). Расход угля получился не меньше, чем у паровых машин. Когда судно пришло в Англию, оказалось, что двигатели не пригодны для дальнейшей эксплуатации, так как у них прогорели днища цилиндров. Чтобы вернуться в Америку, пришлось заменить двигатели обычной паровой машиной. На обратном пути судно попало в аварию и затонуло со всем экипажем.

Маломощные двигатели внешнего сгорания в конце прошлого века применялись в домах для перекачивания воды, в типографиях, на промышленных предприятиях, в том числе на петербургском заводе Нобеля (ныне «Русский дизель»), Устанавливались они и на мелких судах. Стирлинги выпускались во многих странах, в том числе в России, где они назывались «тепло и сила». Ценили их за бесшумность и безопасность работы, чем они выгодно отличались от паровых машин.

С развитием двигателей внутреннего сгорания о стирлингах забыли. В энциклопедическом словаре Брокгауэа и Эфрона о них написано следующее: «Безопасность от взрывов составляет главную выгодную сторону калорических машин, благодаря которой они могут опять войти в употребление, если найдут для их построения и смазки новые материалы, лучше выдерживающие высокую температуру».

Дело заключалось, однако, не только в отсутствии соответствующих материалов. Еще оставались неизвестными современные принципы термодинамики, в частности эквивалентность тепла и работы, без чего невозможно было определить наивыгоднейшие соотношения основных элементов двигателя. Теплообменники делали с малой поверхностью, из-за чего двигатели работали при непомерно высоких температурах и быстро выходили из строя.

Попытки усовершенствовать Стирлинг были предприняты после второй мировой войны. Наиболее существенные из них заключались в том, что рабочий газ стали применять сжатым до 100 атм и использовать не воздух, а водород, имеющий более высокий коэффициент теплопроводности, низкую вязкость и, кроме того, не окисляющий смазки.

Устройство двигателя внешнего сгорания в его современном виде схематически показано на рис. 1. В закрытом с одной стороны цилиндре находятся два поршня. Верхний - поршень-в ы тесните ль служит для ускорения процесса периодического нагрева и охлаждения рабочего газа. Он представляет собой полый закрытый цилиндр из нержавеющей стали, плохо проводящий тепло, и перемещается под действием штока, связанного с кривошипно-шатунным механизмом.

Нижний поршень - рабочий (на рисунке показан в сечении). Он передает усилие на кривошипно-шатунный механизм через полый шток, внутри которого проходит шток вытеснителя. Рабочий поршень снабжен уплотняющими кольцами.

Под рабочим поршнем имеется буферная емкость, образующая подушку, выполняющую функцию маховика - сглаживать неравномерность крутящего момента благодаря отбору части энергии во время рабочего хода и отдаче ее на вал двигателя во время хода сжатия. Для изоляции объема цилиндра от окружающего пространства служат уплотнения типа «заворачивающийся чулок». Это резиновые трубки, прикрепленные одним концом к штоку, а другим к корпусу.

Верхняя часть цилиндра соприкасается с подогревателем, а нижняя - с холодильником. Соответственно в нем выделяются «горячий» и «холодный» объемы, свободно сообщающиеся между собой посредством трубопровода, в котором находится регенератор (теплообменник). Регенератор заполнен путанкой из проволоки малого диаметра (0,2 мм) и обладает высокой теплоемкостью (например, к. п. д. регенераторов фирмы Филипе превышает 95%).

Рабочий процесс двигателя Стирлинга может быть осуществлен и без вытеснителя, на основе применения золотникового распределителя рабочего заряда.

В нижней части двигателя расположен кривошипно-шатунный механизм, служащий для преобразования возвратно-поступательного движения поршня во вращательное движение вала. Особенностью этого механизма является наличие двух коленчатых валов, соединенных двумя шестернями со спиральными зубьями, вращающимися навстречу друг другу. Шток вытеснителя связан с коленчатыми валами посредством нижнего коромысла и прицепных шатунов. Шток рабочего поршня соединяется с коленчатыми валами через верхнее коромысло и прицепные шатуны. Система одинаковых шатунов образует подвижный деформируемый ромб, откуда и название этой передачи - ромбическая. Ромбическая передача обеспечивает необходимый сдвиг фаз при движении поршней. Она полностью уравновешена, в ней не возникают боковые усилия на штоки поршней.

В пространстве, ограниченном, рабочим поршнем, находится рабочий газ - водород или гелий. Полный объем газа в цилиндре не зависит от положения вытеснителя. Изменения объема, связанные со сжатием и расширением рабочего газа, происходят за счет перемещения рабочего поршня.

При работе двигателя верхняя часть цилиндра постоянно нагревается, например, от камеры сгорания, в которую впрыскивается жидкое топливо. Нижняя часть цилиндра постоянно охлаждается, например, холодной водой, прокачиваемой через водяную рубашку, окружающую цилиндр. Замкнутый цикл Стирлинга состоит из четырех тактов, изображенных на рис. 2.

Такт I - охлаждение . Рабочий поршень находится в крайнем нижнем положении, вытеснитель движется вверх. При этом рабочий газ перетекает из «горячего» объема над вытеснителем в «холодный» объем под ним. Проходя по пути через регенератор, рабочий газ отдает ему часть своего тепла, а затем охлаждается в «холодном» объеме.

Такт II - сжатие . Вытеснитель остается в верхнем положении, рабочий поршень движется вверх, сжимая рабочий газ при низкой температуре.

Такт III - нагревание . Рабочий поршень находится в верхнем положении, вытеснитель движется вниз. При этом сжатый холодный рабочий газ устремляется из-под вытеснителя в освобождающееся пространство над ним. По дороге рабочий газ проходит через регенератор, где предварительно подогревается, попадает в «горячую» полость цилиндра и нагревается еще сильнее.

Такт IV - расширение (рабочий ход) . Нагреваясь, рабочий газ расширяется, передвигая при этом вытеснитель и вместе с ним рабочий поршень вниз. Совершается полезная работа.

Стирлинг имеет замкнутый цилиндр. На рис. 3, а показана диаграмма теоретического цикла (диаграмма V - Р). По оси абсцисс отложены объемы цилиндра, по оси ординат - давления в цилиндре. Первый такт является изотермическим I-II, второй происходит при постоянном объеме II-III, третий - изотермический III-IV, четвертый - при постоянном объеме IV-I. Так как давление во время расширения горячего газа (III-IV) больше давления во время сжатия холодного газа (I-II), то работа расширения больше работы сжатия. Полезную работу цикла можно графически изобразить в виде криволинейного четырехугольника I-II-III-IV.

В действительном процессе поршень и вытеснитель движутся непрерывно, так как они связаны с кривошипно-шатунным механизмом, поэтому диаграмма действительного цикла скруглена (рис. 3, б).

Теоретический к. п. д. двигателя стирлинга составляет 70%. Исследования показали, что на практике можно получить к. п. д., равный 50%. Это значительно больше, чем у самых лучших газовых турбин (28%), бензиновых двигателей (30%) и дизелей (40%).


Стирлинг может работать на бензине, керосине, дизельном, газообразном и даже твердом топливе. По сравнению с другими двигателями, он имеет более мягкий и почти бесшумный ход. Объясняется это низкой степенью сжатия (1,3÷1,5), к тому же давление в цилиндре повышается плавно, а не взрывом. Продукты сгорания также выпускаются без Шума, так как сгорание происходит постоянно. В них сравнительно немного токсичных составляющих, потому что горение топлива происходит непрерывно и при постоянном избытке кислорода (α=1,3).

Стирлинг с ромбической передачей полностью уравновешен, в нем не возникает вибраций. Это качество, в частности, было учтено американскими инженерами, установившими одноцилиндровый стирлинг на искусственном спутнике Земли, где даже небольшая вибрация и неуравновешенность могут привести к потере ориентации.

Одним из проблемных вопросов остается охлаждение. В стирлинге с выпускными газами отводится только 9% тепла, получаемого от топлива, поэтому, например, при установке его на автомобиле пришлось бы делать радиатор примерно в 2,5 раза больше, чем при использовании бензинового двигателя той же мощности. Задача решается проще на судовых установках, где эффективное охлаждение обеспечивается неограниченным количеством забортной воды.


На рис. 4 показан разрез двухцилиндрового катерного двигателя Филипс мощностью 115 л. с. при 3000 об/мин с горизонтальным расположением цилиндров. Общий рабочий объем каждого цилиндра 263 см 3 . Поршни, расположенные оппозитно, соединены с двумя траверсами, что позволило полностью уравновесить газовые силы и обойтись без буферных объемов. Подогреватель выполнен из трубок, окружающих камеру сгорания, по которым проходит рабочий газ. Охладителем служит трубчатый холодильник, через который прокачивается забортная вода. Двигатель имеет два коленчатых вала, соединенных с гребным валом посредством червячных передач. Высота двигателя всего 500 мм, что позволяет установить его под настилом и таким образом уменьшить размеры машинного отсека.

Мощность стирлинга регулируется в основном изменением давления рабочего газа. Одновременно, чтобы поддерживать температуру подогревателя постоянной, регулируется и подача топлива. Для двигателя внешнего сгорания пригодны практически любые источники тепла. Важно, что он может превращать в полезную работу низкотемпературную энергию, на что не способны двигатели внутреннего сгорания. Из кривой на рис. 5 видно, что при температуре подогревателя всего 350° С к. п. д. стирлинга еще равен ≈ 20%.

Стирлинг экономичен - удельный расход топлива у него составляет всего 150 г/л. с. час. В энергетической установке «двигатель стирлинг- аккумулятор тепла», использующейся на американских спутниках Земли, тепловым аккумулятором служит гидрит лития, который поглощает тепло в период «освещения» и Отдает его стирлингу, когда спутник находится на теневой стороне Земли. На спутнике двигатель служит для привода генератора мощностью 3 квт при 2400 об/мин.

Создан опытный мотороллер со Стирлингом и аккумулятором тепла. Использование аккумулятора тепла и стирлинга на подводной лодке позволяет ей в несколько раз дольше идти в погруженном положении.

Литература

  • 1. Смирнов Г. В. Двигатели внешнего сгорания. «Знание», М., 1967.
  • 2. Dr. Ir. R. I. Meijer. Der Philips - Stirlingmotor, MTZ, N 7, 1968.
  • 3. Curtis Anthony. Hot air and the wind of change. The Stirling engine and its revival. Motor (Engl.), 1969, (135), N 3488.

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания , являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

Шатунно-поршневые
Роторные
Турбореактивные
Реактивные

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона . Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска .
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна» .

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро Вольта

Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб») .

В 1776 г. Вольта изобрел газовый пистолет - «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения - Вольт.


A - цилиндр, B - «свеча» зажигания, C - поршень, D - «воздушный» шар с водородом, E - храповик, F - клапан сброса отработанных газов, G - рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
Клапан закрывался.
Открывался кран подачи водорода из шара.
Кран закрывался.
Нажатием на кнопку подавался электрический разряд на «свечу».
Смесь вспыхивала и поднимала поршень вверх.
Открывался клапан сброса отработанных газов.
Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В 1833 году , американский изобретатель Лемюэль Веллман Райт , зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.
(см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:

В 1838 году , английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель - двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:

В 1853-57 годах , итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica) , и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом - циклом Отто . Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше) . Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два - в Москве и Петербурге.

В 1865 году , французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.

Science Museum, London.

В 1870 году , австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль - «Second Marcus Car».

В 1872 году , американский изобретатель запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй - рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона» .

В 1878 году , шотландский инженер Сэр (в 1917 году посвящён в рыцари) разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.

В 1879 году , построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби - конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его "Benz Patent Motorwagen ".


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на "Benz Patent Motorwagen ".

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска) , бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа .

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель) , в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.

Музей «Mercedes-Benz» в Штутгарте.

В 1882 году , английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона - это по существу двигатель, работающий по четырёхтактному циклу Отто , но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».

В 1884 году , британский инженер Эдвард Батлер , на лондонской выставке велосипедов "Stanley Cycle Show " продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания , а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин .

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за "Закона Красного Флага " (издан в 1865 году) , согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности) .

В журнале «Английский Механик» от 1890 года, Батлер написал - «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов) , который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1891 году , Герберт Эйкройд Стюарт в сотрудничестве с компанией "Richard Hornsby and Sons " построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик») , установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик) .
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами) . Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем , часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.

В 1893 году , Рудольф Дизель получил патенты на тепловой двигатель и модифицированный "цикл Карно " под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN) , при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600-650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления
В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.

Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в "Норвежском музее техники ".

В 1903 году , Константин Эдуардович Циолковский , в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами », где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания) . В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.

Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных...

Спасибо всем кто прочитал.

Все права защищены © 2016
Любое использование материалов допускается только с указанием активной ссылки на источник.

Двигатели внешнего сгорания стали использоваться тогда, когда людям потребовался мощный и экономичный источник энергии. До этого использовались паровые установки, однако они были взрывоопасными, так как использовали горячий пар под давлением. В начале 19 века им на смену пришли устройства с внешним сгоранием, а еще через несколько десятков лет были изобретены уже привычные приборы с внутренним сгоранием.

Происхождение устройств

В 19 веке человечество столкнулось с проблемой, которая заключалась в том, что паровые котлы слишком часто взрывались, а также имели серьезные конструктивные недостатки, что делало их использование нежелательным. Выход был найден в 1816 году шотландским священником Робертом Стирлингом. Эти устройства можно также называть "двигателями горячего воздуха", которые применялись еще в 17 веке, однако этот человек добавил к изобретению очиститель, называющийся в настоящее время регенератором. Таким образом, двигатель внешнего сгорания Стирлинга был способен сильно повысить производительность установки, так как он сохранял тепло в теплой рабочей зоне, в то время как рабочее тело охлаждалось. Из-за этого эффективность работы всей системы была значительно увеличена.

В то время изобретение использовалось достаточно широко и находилось на подъеме своей популярности, однако со временем его перестали использовать, и о нем забыли. На смену оборудованию внешнего сгорания пришли паровые установки и двигатели, но уже привычные, с внутренним сгоранием. Вновь о них вспомнили лишь в 20 веке.

Работа установки

Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.

Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.

Первый тип двигателя. «Альфа»

Первой моделью, которая использовалась, стала «Альфа» Стирлинга. Особенность его конструкции состоит в том, что она имеет два силовых поршня, находящихся в разных в раздельных цилиндрах. Один из них имел достаточно высокую температуру и был горячим, другой, наоборот, холодным. Внутри теплообменника с высокой температурой располагалась горячая пара цилиндр-поршень. Холодная пара находилась внутри теплообменника с низкой температурой.

Основными преимуществами теплового двигателя внешнего сгорания стало то, что они имели высокую мощность и объем. Однако температура горячей пары при этом была слишком велика. Из-за этого возникали некоторые технические трудности в процессе изготовления таких изобретений. Регенератор данного устройства находится между горячей и холодной соединительными трубками.

Второй образец. «Бета»

Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.

Последняя модель. «Гамма»

Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип - это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.

Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.

Применение устройств в настоящее время

Казалось бы, что такое старое изобретение не может использоваться в наши дни, однако это не так. NASA заказало двигатель внешнего сгорания типа Стирлинга, однако в качестве рабочего вещества должны использоваться ядерные и радиоизотопные источники тепла. Кроме этого, он также успешно может быть использован в следующих целях:

  • Использовать такую модель двигателя для перекачки жидкости гораздо проще, чем обычный насос. Во многом это благодаря тому, что в качестве поршня можно применять саму перекачиваемую жидкость. Кроме того, она же и будет охлаждать рабочее тело. К примеру, такой вид "насоса" можно использовать, чтобы накачивать воду в ирригационные каналы, используя для этого солнечное тепло.
  • Некоторые изготовители холодильников склоняются к установке таких устройств. Стоимость продукции удастся снизить, а в качестве хладагента можно применять обычный воздух.
  • Если совместить двигатель внешнего сгорания этого типа с тепловым насосом, то можно оптимизировать работу тепловой сети в доме.
  • Довольно успешно Стирлинги используются на подводных лодках ВМС Швеции. Дело в том, что двигатель работает на жидком кислороде, который впоследствии используется для дыхания. Для подводной лодки это очень важно. К тому же такое оборудование обладает достаточно низким уровнем шума. Конечно, агрегат достаточно большой и требует охлаждения, но именно эти два фактора несущественны, если речь идет о подводной лодке.

Преимущества использования двигателя

Если во время конструирования и сборки применить современные методы, то удастся поднять коэффициент полезного действия двигателя внешнего сгорания до 70%. Использование таких образцов сопровождается следующими положительными качествами:

  • Удивительно, однако крутящий момент в таком изобретении практически не зависит от скорости вращения коленчатого вала.
  • В данном силовом агрегате отсутствуют такие элементы, как система зажигания и клапанная система. Также здесь отсутствует распредвал.
  • Достаточно удобно то, что на протяжении всего периода использования не потребуется проводить регулировку и настройку оборудования.
  • Данные модели двигателя не способны "заглохнуть". Простейшая конструкция аппарата позволяет использовать его достаточно продолжительное время в полностью автономном режиме.
  • В качестве источника энергии можно использовать практически все, начиная от дров и заканчивая урановым топливом.
  • Естественно, что в двигателе внешнего сгорания процесс сжигания веществ осуществляется снаружи. Это способствует тому, что топливо дожигается в полном объеме, а количество токсических выбросов минимизируется.

Недостатки

Естественно, что любое изобретение не лишено недостатков. Если говорить о минусах таких двигателей, то они заключаются в следующем:

  1. Из-за того что сгорание осуществляется вне двигателя, отвод получаемого тепла происходит через стенки радиатора. Это вынуждает увеличивать габариты устройства.
  2. Материалоемкость. Для того чтобы создать компактную и эффективную модель двигателя Стирлинг, необходимо иметь качественную жаропрочную сталь, которая сможет выдержать большое давление и высокую температуру. Кроме того, должна быть низкая теплопроводность.
  3. В качестве смазки придется покупать специальное средство, так как обычное коксуется при высоких температурах, которые достигаются в двигателе.
  4. Для получения достаточно высокой удельной мощности придется использовать либо водород, либо гелий в качестве рабочего вещества.

Водород и гелий в качестве топлива

Получение высокой мощности, конечно же, необходимо, однако нужно понимать, что использование водорода или гелия достаточно опасно. Водород, к примеру, сам по себе достаточно взрывоопасен, а при высоких температурах он создает соединения, которые называются металлогидритами. Это происходит, когда водород растворяется в металле. Другими словами, он способен разрушить цилиндр изнутри.

Кроме того, и водород, и гелий - это летучие вещества, которые характеризуются высокой проникающей способностью. Если говорить проще, то они достаточно легко просачиваются сквозь практически любые уплотнения. А потери вещества означают потери в рабочем давлении.

Роторный двигатель внешнего сгорания

Сердце такой машины - это роторная машина расширения. Для двигателей с внешним типом сгорания этот элемент представлен в виде полого цилиндра, который с обеих сторон прикрыт крышками. Сам по себе ротор имеет вид колеса, который посажен на вал. Также у него имеется определенное количество П-образных выдвигающихся пластин. Для их выдвижения используется специальное выдвижное устройство.

Двигатель внешнего сгорания Лукьянова

Юрий Лукьянов - это научный сотрудник Псковского политехнического института. Он уже достаточно давно занимается разработкой новых моделей двигателей. Ученый старался сделать так, чтобы в новых моделях отсутствовали такие элементы, как коробка передач, распредвал и выхлопная труба. Основной недостаток устройств Стирлинга заключался в том, что они имели слишком большие габариты. Именно этот недостаток ученому и удалось устранить за счет того, что лопасти были заменены на поршни. Это помогло уменьшить размер всей конструкции в несколько раз. Некоторые говорят о том, что можно сделать двигатель внешнего сгорания своими руками.

- тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания...

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью - увеличение по клику.

Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.