Что такое турбина в двигателе автомобиля. Принцип работы турбонаддува. Механизм газовой турбины

Для того, чтобы увеличить мощность и крутящий момент двигателя, человечество придумало массу устройств и агрегатов. Самый простой метод - пойти на увеличение объема камеры сгорания. Чем больше топлива попадет в цилиндр, тем больше произведется полезной работы. Но здесь возникают проблемы. Во-первых, размеры такого мотора могут быть запредельными, а во-вторых, эксплуатация такого ДВС ввиду высокого расхода топлива будет нерентабельной. Поэтому в последнее время все чаще автопроизводители оснащают свои машины турбиной. Что это за элемент. и в чем заключается принцип работы турбины? Узнаем подробно в нашей статье.

Характеристика

Турбина - это элемент впускной системы двигателя, который служит для увеличения давления воздуха за счет применения энергии отработавших газов. Благодаря ее работе, возрастает масса воздуха в камере сгорания.

Это позволяет ускорить такты работы двигателя и увеличить его крутящий момент. Также отметим, что первые турбины имели механический привод. Принцип работы такой турбины заключался в преобразовании энергии от коленчатого вала. С последним элемент соединялся путем ременной передачи. Но вскоре такие агрегаты перестали использоваться. Сейчас все производители применяют газовую турбину, принцип работы которой позволяет увеличить КПД двигателя на 80 процентов вместо 30.

Где используется

В основном, такой агрегат можно встретить на современных автомобилях. Но используется данный нагнетатель не на всех ДВС. Сдерживающим фактором применения турбины на бензиновых моторах является высокая степень детонации. Она связана с увеличением частоты вращения ДВС и огромной температурой выхлопных газов (до тысячи градусов). Ввиду этого часто используется турбина на дизельном двигателе. Принцип работы такого ДВС несколько иной. Здесь меньший риск детонации, а температура газов не превышает 600 градусов. Особенно часто компрессоры встречаются на коммерческом транспорте. Невозможно представить современный автобус или магистральный тягач, не оснащенный такой турбиной. Если говорить о марках, то турбина устанавливается на следующие авто:

  • «Фольксваген».
  • «Мерседес».
  • «Вольво».
  • «Мазда».
  • «Ауди».
  • «Рено».
  • «Тойота».

Есть и другие сферы, где применяется подобный элемент. Например, это электростанции и ДВС кораблей. Но здесь используется уже паровая турбина, принцип работы которой мы рассмотрим немного позже.

Недостатки

Почему данный элемент присутствует не на всех двигателях внутреннего сгорания? В первую очередь, применение турбины увеличивает себестоимость производства авто. Помимо самой улитки, требуется еще ряд других элементов.

К тому же, для работы с турбиной двигателю нужна другая более крепкая поршневая система и блок. Это тоже влечет за собой дополнительные расходы. Также среди недостатков можно отметить так называемую турбояму (когда мотор не может набрать обороты за нужное время). Причинами данного явления является инерционность компрессора.

Конструкция

Итак, давайте рассмотрим устройство и принцип работы турбины. А состоит данный элемент из трех основных составляющих:

  • Центрального корпуса.
  • Центробежного компрессора.
  • Улитки.

В конструкцию последней входит турбинное и компрессорное колеса, вал ротора, подшипники скольжения и уплотнительные кольца. Все это заключено в крепкий металлический термостойкий корпус. Поскольку принцип работы турбины двигателя основан на использовании энергии выхлопных газов, горячая часть улитки может раскаляться до тысячи и более градусов Цельсия.

Вспомогательные элементы

Поскольку турбина входит в состав впускной системы, ее работа невозможна без использования воздушного фильтра, дроссельной заслонки, а также интеркулера.

Последний призван охладить кислород, который нагнетается в камеру под давлением. Чем холоднее воздух в интеркулере, тем лучше сгорает смесь в цилиндрах. Также в конструкции не обходится без соединительных и масляных шлангов.

Как работает

Стоит отметить, что принцип работы турбины на бензиновом двигателе такой же, как и на дизельном. Во время работы ДВС вырабатываются выхлопные газы. Они поступают в корпус (горячую часть улитки), где двигаются по лопаткам турбинного колеса. Последнее раскручивается до невероятных скоростей - 100 и более тысяч оборотов в минуту. Поскольку турбинное колесо жестко соединено с валом, крутящий момент передается на вторую холодную часть турбины. Та, в свою очередь, начинает захватывать кислород из атмосферы. Он проникает внутрь после того, как пройдет через фильтр. Далее воздух под давлением попадает во впускной коллектор, где смешивается с топливом и проникает в камеру сгорания. В качестве материалов для корпуса турбины используются жаропрочные марки стали и железоникелевый сплав.

Производительность компрессора зависит от ее формы и габаритных размеров. Чем больше ее диаметр, тем больше воздуха засасывается во впускной коллектор. Но нельзя постоянно увеличивать размеры компрессора. Это может привести к турбозадержке. Малая турбина раскручивается значительно быстрее до номинальной скорости. Но на пике имеет меньшую производительность. Поэтому размеры и форма элемента подбираются строго индивидуально для каждого ДВС. Нельзя установить агрегат от бензинового авто на дизельный, и наоборот. Хоть и имеет одинаковый принцип работы турбина, действовать она будет иначе на разных авто.

Важный момент: для регулирования давления наддува в конструкции предусмотрен специальный перепускной клапан. Он имеет пневматический привод, а управляется ЭБУ двигателя.

Система смазки

Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Но не стоит думать, что эта система нужна только для смазки. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому, достигается лучшее охлаждение, но такая конструкция значительно сложнее и дороже в производстве.

Дабы избавиться от турбоямы, производители постоянно совершенствуют конструкцию турбины на дизеле. Принцип работы ее остается прежним, но меняются следующие моменты:

  • Масса компрессора. Турбина изготавливается из одновременно легких и прочных материалов (например, из керамики).
  • Конструкция подшипников. Чем меньше потери на трение, тем выше производительность турбины. Колесо легче раскручивается до номинальных значений.

Типы турбин

На данный момент существует несколько популярных типов компрессоров:

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей - регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Паровая турбина

Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.

Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.

В заключение

Итак, мы выяснили принцип работы дизельной турбины, а также бензиновой и паровой. Как видите, данные элементы устанавливаются с единой целью - выработать полезный крутящий момент. В случае с автомобилями он тратится на подачу воздуха под давлением во впуск. А на электростанциях турбина необходима для работы генератора, что вырабатывает ток.

Читая описания новых спортивных моделей от того или иного автопроизводителя, часто встречаешь термин "турбонаддув". Турбокомпрессоры, динамика, скоростные качества - это одна из самых будоражащих тем для каждого автолюбителя. Можно много говорить о респектабельности и комфорте, но классный спорткар просто притягивает к себе взгляды.

Давайте рассмотрим, в чём заключается главная особенность и как работает турбонаддув?

Различные производители постоянно внедряют новые технологии, направленные на повышение производительности двигательных агрегатов. И надо признать, что есть определённый прогресс, так как появляется всё больше и больше новых технологий. Хотя при этом многие признают, что суть остаётся та же.

Технология "наддува"

Термин "наддув" обозначает процесс повышения свежего заряда топлива в двигателе внутреннего сгорания, благодаря искусственному повышению давления. Данная технология предназначается в первую очередь для повышения мощности. При самых удачных раскладах, показатель улучшается до 45%.

Наиболее распространённым является так называемый агрегатный наддув, известный в широких кругах как "турбонаддув". И ключевым элементом в данном случае является турбокомпрессор.

Правда механический компрессор постепенно уходит в прошлое, вместо него производители применяют турбину.

Он основывается на более продуманной утилизации отработанных газов. Их энергия за счёт нагнетания давления используется для повышения мощности. В итоге удаётся заметно повысить производительность.

При работе в двигателе сгорает топливо, за счёт чего вырабатывается энергия для движения. Однако выхлопные газы после этого просто выходят наружу. Турбонаддув позволяет использовать их для повышения мощности.

Для этого используется турбина.

    Газы попадают на крыльчатку, приводя её в движение.

    На одном валу с ней располагается компрессор, который непосредственно нагнетает давление в цилиндрах.

В обычной системе воздух попадает естественным путём, за счёт разрежения при открытии поршня.

Искусственное нагнетания приводит к тому, что внутрь цилиндра попадает больше воздушно-топливной смеси. А это в свою очередь приводит к выработке большей мощности при сгорании. Именно так работает турбонаддув в машине.

Агрегатный турбонаддув предназначается исключительно для того, чтобы повысить мощность двигателя и его КПД.

Технология применяется в тех случаях, когда требуется сделать мотор более мощным, сохраняя при этом его габариты и размеры. Главное достоинство заключается в том, что повышается мощность без повышения оборотов двигателя.

Компрессор позволяет искусственно нагнетать давление в системе, за счёт чего увеличивается объём сгораемого топлива, и соответственно повышается мощность. Автомобиль начинает на тех же оборотах двигаться гораздо быстрее.

Недостатки турбонаддува

У турбокомпрессора есть и свои минусы. За скорость необходимо платить. В первую очередь, конечно, это выражается в расходе топлива. В зависимости от регулировки наддува и особенностей той или иной модели расход топлива может значительно возрастать.

Повышенная мощность и увеличенный объём сгораемого топлива приводит к тому, что температура при такте сжатия повышается в разы. Это в свою очередь создаёт опасность возникновения детонации. И чтобы избежать этого требуется установка дополнительных элементов - промежуточных охладителей, регуляторы степени сжатия и т.д.

Система включает в себя несколько элементов:

    Турбокомпрессор;

    Интеркулер;

    Регулировочный клапан (поддерживающий заданное давление);

    Перепускной клапан;

    Выпускной коллектор.

Также современные системы турбонаддува оснащаются многочисленными датчиками, позволяющими лучше контролировать весь процесс.

Многие производители сейчас устанавливают свои собственные версии турбонаддува, в том числе и на дизельные версии. В целом они демонстрируют довольно неплохие результаты. Автомобилисты при покупке получают возможность выбрать ту версию, которая им подходит больше всего. Это касается не только наличия дополнительных опций, но и двигателя. Производители же постоянно работают над повышением эффективности - снижение расхода топлива и одновременное улучшение динамических характеристик автомобиля.

Видео

Подробнее о работе турбины смотрите следующий видеоматериал:

Без сомнений каждый из нас автолюбителей хотя бы раз за свою жизнь замечал на вполне обычном на первый взгляд автомобиле шильдик с заветной надписью «turbo». Производители будто бы специально делают эти надписи крохотного размера, да ещё и в местах неприметных их размещают. А человек, который знает толк в подобных технологиях, обязательно заинтересованно остановится на пару минут. Ниже мы подробно расскажем о том, почему же такой интерес вызывает маленькая неприметная надпись «turbo».

Технология турбонаддува

На данное время турбонаддув является одной из самых эффективных систем, повышающих мощность двигателя, при этом частота вращения коленчатого вала не увеличивается как и объём цилиндров. Кроме повышения мощностных характеристик двигателя, турбонаддув также способствует экономии топлива, с расчётом на каждую единицу мощности, и снижению токсичности вырабатываемых газов за счёт того, что топливо сгорает полностью.

Система турбонаддува устанавливается как на бензиновые так и на дизельные двигатели. Но наибольшая эффективность турбонаддува проявляется именно на дизельных моторах. Достигается такой эффект за счёт высокой степени сжатия дизельного движка и достаточно низкой частоты вращения Факторы, которые сдерживают применение турбонаддува на бензиновых двигателях на максимально возможном уровне – это возможная детонация, связанная с резким увеличением частоты оборотов двигателя, а также высокая температура отработанных газов, которая почти в два раза превышает показатели дизельных собратьев, и соответственно сильный нагрев турбонагнетателя.

Несмотря на конструктивные различия отдельных систем, выделим общее устройство турбонаддува – это воздухозаборник, затем воздушный фильтр, дроссельная заслонка, турбокомпрессор, интеркулер, впускной коллектор. Все данные элементы объединены между собой соединительными патрубками и напорными шлангами.

Принцип работы турбонаддува

Работа системы турбированного наддува основывается на эксплуатировании энергии отработанных газов . Отработанные газы вращают колесо турбины, которое далее посредством роторного вала вращает колесо компрессора. Колесо компрессора сжимает воздух и выталкивает его в систему. Сжатый и нагретый воздух охлаждается интеркулером и далее поступает в цилиндры мотора. Не смотря на то, что у турбонаддува нет жёсткой связи с коленвалом двигателя, эффективность нагнетательной системы по многим аспектам зависит от количества оборотов двигателя. Пропорционально с увеличение частоты вращения коленчатого вала, увеличивается и энергия отработанных газов – турбина вращается быстрее, больший объём сжатого воздуха подаётся в цилиндры мотора.

В силу своих конструктивных особенностей у турбонаддува имеются и свои негативные проявления, среди которых можно выделить задержку прироста мощности двигателя при резком нажатии педали акселератора – эффект турбоямы , а также резкое увеличение давления наддува после выхода из турбоямы – турбоподхват. Эффект турбоямы обусловлен инерционностью системы (чтобы повысить давление наддува, в момент резкого нажатия педали газа, необходимо определённое время), которая ведёт к разности между необходимой мощностью и производительностью компрессора. Есть несколько способов, которые в состоянии решить данную проблему:

- установка турбины с изменяемой геометрией;

Установка двух компрессоров с последовательным или параллельным расположением (twin-turdo или bi-turdo);

Комбинированный наддув.

Турбина с изменяемой геометрией необходима для оптимизирования потока отработанных газов за счёт конвертации площади входного канала. Такая технология нашла широкое применение в дизельных двигателях с турбонаддувом TDI от компании Volkswagen.

Система, включающая в себя два параллельных турбокомпрессора, применяется зачастую на мощных V-образных двигателях (один компрессор на каждый ряд цилиндров). Система работает таким образом, что инерция двух маленьких турбин гораздо менее подааётся инерции чем одна большая. С установкой на двигатель двух последовательно расположенных турбин, максимальная производительность системы достигается разными турбокомпрессорами на разных частотах двигателя. Некоторые автомобильные производители заходят ещё дальше, устанавливая последовательно три турбокомпрессора – система triple-turbo от BMW и даже четыре - quad-turbo от Bugatti.

Комбинированный наддув объединяет в себе механический и турбонаддув. На низких оборотах коленвала двигателя сжатие воздуха производится механическим нагнетателем. С возрастанием оборотов механический нагнетатель передаёт эстафету турбокомпрессору, отключаясь при этом. Яркий пример такой системы – это двойной наддув TSI от Volkswagen.

Разновидности турбонаддува

Современное автомобилестроение насчитывает два основных вида турбин для двигателя: одинарные и двойные. Одинарные турбины устанавливаются, как правило, на двигатели с рядным расположением цилиндров: здесь происходит использование энергии выхлопных газов сразу от всех цилиндров двигателя с подачей воздуха также во все цилиндры.

Двойными турбинами оснащаются силовые агрегаты V-образного расположения цилиндров. Они включают в себя два турбокомпрессора, подающих воздух в определённые цилиндры. Порой для роста мощности двигателя в таких турбинах используется перекрёстный выпускной коллектор, аккумулирующий выхлопные газы из всех цилиндров двигателя, далее направляя этот поток увеличенной мощности к компрессорам, повышая давление в турбине, что соответственно увеличивает и мощность двигателя. Революционным прорывом стала технология, позволяющая изменять геометрию турбины. Она позволяет перенаправлять геометрию сопла турбины, при этом создавая более мощные воздушные потоки уже на низах, в результате чего мощность двигателя возрастает многократно.

Конструктивные особенности турбонаддува

Если вести речь о конкретных модификациях двигателя, а также о расположении разнообразных элементов в подкапотном пространстве, турбокомпрессор может оснащаться рядом дополнительных элементов. Рассмотрим две детали системы турбонаддува, как Wastegate и Blow-Off.

Клапан Blow-off

Блоу-офф – это перепускной клапан. Данный механизм устанавливается в воздушной системе. И располагается он между дроссельной заслонкой и выходом из компрессора. Основной задачей клапана блоу-офф является аредотвращение перехода компрессора в режим работы surge. Для такого режима характерно резкое закрытие дроссельной заслонки. Если описать процесс простыми словами, то скорость потока воздуха и его расход в системе резко понижаются, но турбина по инерции ещё продолжает вращаться. По инерции турбина обладает такой скоростью вращения, которая совсем не соответствует новым запросам двигателя и снизившемуся воздушному расходу.

Такие регулярные циклические резкие перепады давления воздуха могут плачевно сказаться на всей системе. Диагностировать такие скачки можно по характерному звуку, прорывающегося через компрессор, воздуха. Со временем выходят из строя опорные подшипники турбины, ибо на них приходится максимальная нагрузка в результате резких перепадов давления при сбросе газа и дальнейшем режиме работы турбины в инерционном состоянии. Blow-off устраняет данную проблему.

Он является своеобразным детектором перепада давлений в коллекторе, затем срабатывает за счёт вмонтированной пружины. Это выявляет момент резкого перекрытия дросселя. Если произошло резкое закрытие дросселя, клапан стравливает в атмосферу лишний воздух, который появился в воздушном тракте от переизбытка давления. Это существенно повышает безопасность турбокомпрессора и уберегает его от избыточных нагрузок, приводящих к последующему разрушению.

Клапан Wastegate

Данное технологическое решение является механическим клапаном. Вайстгейт устанавливается либо на части турбины, либо непосредственно на впускном коллекторе. Основной функцией данного устройства является обеспечение контроля за давлением, создаваемым турбокомпрессором. Отметим, что некоторые из дизельных силовых агрегатов в своей конструкции обходятся без вайстгейта. Для бензиновых моторов, в большинстве своём, этот клапан просто обязательная необходимость.

Главная задача вайстгейта заключается в обеспечении беспрепятственного выхода отработанных газов из системы, не проводя их через турбину. Запуск выхлопных газов в обход турбины позволяет контролировать необходимое количество их энергии. Взаимосвязь, как на ладони, ведь именно отработанные газы вращают через коленчатый вал колесо компрессора. Благодаря этому способу контроль за давлением, создаваемом в компрессоре, стало осуществлять гораздо проще.

Wastegate бывает как встроенный, так и внешний. Встроенный вайстгейт уже имеет заслонку, встроенную в турбинный хаузинг. Хаузинг – это улитка турбины, которую в народе так привыкли называть. Дополнительно в wastegate установлен пневматический актуатор, а также от него идут тяги к дроссельной заслонке. Wastegate внешнего типа является клапаном, что установлен перед турбиной на выпускной коллектор. Не можем не заметить, что внешний вайстгейт обладает одним неоспоримым преимуществом в сравнении с его встроенным братом. А дело заключается в том, что обходной воздушный поток, сбрасываемый им, можно возвращать в выхлопную систему обратно, а на спорткарах можно просто осуществить прямой выброс в атмосферу. Это заметно улучшает прохождение выхлопных газов через турбину благодаря разнонаправленным потокам.

Недостатки турбонаддува

В силу своих конструктивных особенностей у турбонаддува имеются и свои негативные проявления, среди которых можно выделить задержку прироста мощности двигателя при резком нажатии – эффект турбоямы, а также резкое увеличение давления наддува после выхода из турбоямы – турбоподхват.

Повышение мощности двигателя с сохранением его общих характеристик, то есть форсирование приводит к интенсивному износу узлов, в следствии снижается ресурс силового агрегата. Турбинам необходимо также и применение специальных сортов моторных масел и строгое соблюдение сроков проведения технического обслуживания, зарекомендованных производителем. Ещё более прихотлив Возрастающее давление картерных газов существенно снижает ресурс турбины. Если при таких условиях турбина будет продолжать работать длительный период, то это неизбежно приведёт к масляному голоданию и последующей поломке турбокомпрессора. А если будет повреждён этот агрегат, то есть немалый процент выхода из строя всего силового агрегата.

Подписывайтесь на наши ленты в

Некоторые машины отличаются от своих собратьев той же марки шильдиком «Turbo» на крышке багажника. Говорит он о том, что в таком автомобиле имеется турбонаддув двигателя. Что же это значит и для чего инженеры оснащают моторы дополнительными устройствами?

Теория турбонаддува

С самого начала эпохи автомобилестроения производители бились над задачей увеличения мощности двигателя внутреннего сгорания . Мощность силового агрегата напрямую зависит от его рабочего объема и количества топливно-воздушной смеси, подаваемой в цилиндры. Таким образом, получается, что форсировать мотор можно либо, увеличив его объем (при этом нужно решить задачу, как поместить увеличившийся агрегат в автомобиле), либо, каким-то образом загнать в цилиндры большее количество воздуха и увеличить подачу топлива.

Первый способ влечет за собой значительный перерасход горючего, к тому же увеличиваются размеры и масса двигателя, что не всегда допустимо. Для решения задачи вторым способом применяются системы принудительного нагнетания воздуха в цилиндры.

Виды турбонаддува

Существует три способа увеличения подачи воздуха:

  1. резонансный (в данном случае используется кинетическая энергия воздуха во впускном коллекторе , нагнетатель не нужен);
  2. механический (воздух нагнетается при помощи компрессора, приводимого в действие от двигателя);
  3. газотурбинный (для работы нагнетателя используется энергия отработавших газов).

Поскольку в первом случае нагнетатель не применяется, а повышенное давление воздуха создается за счет четко выверенной формы и длины впускного коллектора, резонансный наддув в рамках данной статьи рассматриваться не будет. Гораздо интереснее два других варианта турбонаддува.

Механический наддув

Использование компрессора – это один из способов увеличить подачу воздуха в цилиндры двигателя. Принцип его работы заключается в следующем: компрессор приводится в действие от шкива коленчатого вала, и начинает нагнетать воздух с первых секунд работы мотора.

Плюсы такой системы в том, что нагнетание воздуха происходит на любых режимах работы силового агрегата, в том числе при минимальных оборотах, а давление увеличивается с ростом оборотов коленвала. Кроме того, в случае использования компрессора отсутствует такое явление, как турбояма.


Разумеется, данное устройство наддува имеет и свои минусы. Самым главным недостатком является то, что на обеспечение работы нагнетателя расходуется часть мощности двигателя автомобиля, а значит, снижается его КПД. Помимо этого, механический наддув требует больше места для монтажа, нуждается в специальном приводе (для этого используется зубчатый ремень) и является источником повышенного шума.

Данный вид наддува появился раньше газотурбинного, но, несмотря на некоторую архаичность, его до сих пор можно встретить в современном автомобиле. Наиболее ярким примером может служить Мерседес, шильдик «compressor» на багажнике некоторых моделей этой марки указывает на то, что под капотом скрывается мотор, оснащенный системой механического наддува.

Газотурбинный наддув

Устройство турбонаддува

Чаще всего моторы современных автомобилей оснащаются газотурбинными нагнетателями. Их устройство сходно с механическими компрессорами, различается лишь принцип действия – вместо зубчатого ремня работают выхлопные газы.

«Турбина включилась, и машине как будто пинка дали», — такое довольно часто можно услышать от автовладельцев, моторы машин которых имеют турбонаддув. На самом деле турбина – это только одна из составных частей всей системы, представляющая собой крыльчатку, жестко закрепленную на валу и приводящую в действие другую крыльчатку, также закрепленную на этом же валу. Устройство турбонаддува газотурбинного типа несколько сложнее.

Основными составными частями являются:

  • корпус;
  • две крыльчатки;
  • вал, на котором располагаются крыльчатки;
  • две улитки, в которых вращаются крыльчатки;
  • три подшипника скольжения (один упорный и два опорных);
  • перепускной клапан (необходим для стравливания избыточного давления).

Принцип работы турбонаддува

Принцип работы турбонаддува довольно прост. На одном валу расположены крыльчатка-нагнетатель и крыльчатка-турбина, каждая из которых вращается в своей улитке. Отработавшие газы из выпускного коллектора проходят через одну из улиток и вращают крыльчатку-турбину. Вращение посредством общего вала передается второй крыльчатке, которая повышает давление атмосферного воздуха, проходящего через вторую улитку.

Турбонаддув — плюсы и минусы

Плюсы

Основные плюсы турбонаддува – повышение КПД и экономичности двигателя автомобиля. Причина этого в том, что система приводится в действие за счет энергии отработавших газов, не отнимая мощность у мотора. Необходимо различать удельную и общую экономичность двигателя автомобиля.

Силовой агрегат, имеющий турбонаддув, потребляет больше топлива, чем «атмосферник» того же объема, поскольку большее количество воздуха, загнанного в цилиндры, позволяет сжечь больше топлива, но массовая доля горючего из расчета на единицу мощности в час всегда ниже, чем у мотора без турбонаддува.

Перечисляя плюсы, необходимо упомянуть лучшую экологичность «наддутых» двигателей. Турбонаддув обеспечивает более полное сгорание горючего. Кроме того, наддув понижает температуру камеры сгорания, что приводит к уменьшению образования оксида азота.

Минусы

У турбонаддува есть и свои минусы. Во-первых, такое устройство требует аккуратного обращения. Дело в том, что масло к подшипникам компрессора подается под давлением, пока работает двигатель автомобиля. После поездки, когда мотор горячий, стоит только выключить зажигание, и масло подаваться перестанет. Если двигатель работал в тяжелых режимах, то вполне вероятен перегрев компрессора и выход его из строя. Чтобы избежать поломки, необходимо дать мотору поработать некоторое время на холостых оборотах, и только потом заглушить. Некоторые автомобили оснащаются турботаймером, который берет эту заботу на себя.

Другие значительные минусы – это ограниченный диапазон эффективной работы турбокомпрессора и турбояма (замедленный отклик турбины на нажатие педали газа). Система турборнаддува эффективно работает в довольно узком диапазоне частоты вращения коленвала, который зависит от размеров турбины. Для решения данной проблемы производители часто применяют двойной турбонаддув, т.е. устанавливают две турбины с крыльчатками разного диаметра, каждая из которых эффективно работает в разных диапазонах, либо две одинаковых турбины (Би-турбо и Твин-турбо).

В первом случае система турбонаддува расширяет диапазон эффективности. Принцип действия заключается в том, что там, где первая турбина теряет эффективность, подхватывает вторая. Во втором достигается максимальная производительность системы. Устанавливается двойной турбонаддув как на рядные, так и на V-образные моторы. Для уменьшения эффекта турбоямы производители стараются максимально снизить вес валов и крыльчаток, чтобы уменьшить инерцию.

Слово «турбонаддув» хоть раз в жизни слышал, вероятно, каждый автомобилист. Еще в старые советские времена среди гаражных мастеров ходило множество невероятных слухов о колоссальном приросте мощности, даваемом турбонаддувом, однако реально с моторами такого типа в легковых авто никто тогда не сталкивался.

Сегодня же наддувные двигатели прочно вошли в нашу действительность, однако в реальности далеко не каждый может сказать о том, как работает турбина в автомобиле, и какая существует реальная польза либо вред от использования турбины.

Что ж, попробуем разобраться в этом вопросе и узнать, каков принцип работы турбонаддува, а также о том, какие он имеет преимущества и недостатки.

Автомобильная турбина — что это такое

Говоря простым языком, автомобильная турбина представляет собой механическое устройство, подающее в цилиндры воздух под давлением. Задачей турбонаддува является увеличение мощности силового агрегата при сохранении рабочего объема мотора на прежнем уровне.

То есть, по факту, используя турбонаддув, можно добиться пятидесятипроцентного (и даже более) прироста мощности в сравнении с безнаддувным мотором аналогичного объема. Обеспечивается повышение мощности тем, что турбина подает в цилиндры воздух под давлением, что способствует лучшему горению топливной смеси и, как результат, мощностной отдаче.

Чисто конструктивно турбина представляет собой механическую крыльчатку, приводимую в действие выхлопными газами двигателя. По сути, используя энергию выхлопа, турбонаддув способствует захвату и подаче «жизненно важного» для мотора кислорода из окружающего воздуха.

Сегодня турбонаддув выступает самой эффективной в техническом плане системой для повышения мощности мотора, а также достижения и токсичности отработанных газов.

Видео — как работает автомобильная турбина:

Турбина одинаково широко применяется как на бензиновых силовых агрегатах, так и на дизелях. При этом в последнем случае турбонаддув оказывается наиболее эффективным ввиду высокой степени сжатия и малой (относительно бензиновых моторов) частоты вращения коленвала.

Кроме того, эффективность применения турбонаддува на бензиновых двигателях ограничена возможностью проявления детонации, которая может возникать при резком увеличении оборотов мотора, а также температура выхлопных газов, которая составляет порядка одной тысячи градусов по Цельсию против шестисот у дизеля. Само собой, что подобный температурный режим способен привести к разрушению элементов турбины.

Конструктивные особенности

Несмотря на то, что турбонаддувные системы у различных производителей имеют свои отличия, существует и ряд общих для всех конструкций узлов и агрегатов.

В частности, любая турбина имеет воздухозаборник, установленный непосредственно за ним воздушный фильтр, заслонку дросселя, сам турбокомпрессор, интеркулер, а также впускной коллектор. Элементы системы соединяются между собой шлангами и патрубками, выполненными из прочных износостойких материалов.

Как наверняка заметили читатели, знакомые с конструкцией автомобиля, существенным отличием турбонаддува от традиционной системы впуска является наличие интеркулера, турбокомпрессора, а также конструктивных элементов, предназначенных для управления наддувом.

Турбокомпрессор или, как его еще называют, турбонагнетатель, представляет собой основной элемент турбонаддува. Именно он отвечает за увеличение давления воздуха во впускном тракте двигателя.

Конструктивно турбокомпрессор состоит из пары колес – турбинного и компрессорного, которые размещаются на роторном валу. При этом каждое из этих колес имеет собственные подшипники и заключено в отдельный прочный корпус.

Как работает турбонаддув в машине

Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.

Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.

Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.

Видео — для чего нужен турбокомпрессор и как он работает:

Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.

Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.

Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.

Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?

Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.

Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува.

Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.

Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.

Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.

Принцип работы автомобильной турбины

Как уже писалось выше, принцип действия турбонаддува в автомобиле основывается на использовании энергии, выделяемой отработавшими газами двигателя. Газы вращают колесо турбины, которое, в свою очередь, через вал передает крутящий момент колесу компрессора.

Видео — принцип работы двигателя с турбонаддувом:

Тот, в свою очередь, сжимает воздух и осуществляет его нагнетение в систему. Охлаждаясь в интеркулере, сжатый воздух попадает в цилиндры двигателя и обогащает смесь кислородом, обеспечивая эффективную «отдачу» мотора.

Собственно, именно в принципе действия турбины в автомобиле кроются ее достоинства и недостатки, устранить которые инженерам весьма непросто.

Плюсы и минусы турбонаддува

Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта , чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

  • использование турбины с переменной геометрией;
  • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
  • применение комбинированной схемы наддува.

Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.